5605
Pharmaceuticals

P38 and JNK Inhibitor as Potential Treatment for Various Pathologies (No. T4-1733)

Lead Researcher: Prof. Rony Seger

Summary

Recently, Prof. Zeger and his team discovered a new level of regulation to stimulated transcription. They showed that ?-like importunes are central mediators of nuclear translocation of signaling proteins. Furthermore they identified the site of interaction and designed accordingly a peptide which was found to prevent nuclear translocation.This technology presents peptides with the potential of treating inflammatory and immune disease by regulating (prevent or promote) the translocation of proteins into the nucleus.

Applications

  • Inflammation

  • Immune diseases
  • Advantages

  • Effective

  • Safe
  • Technology's Essence

    The researchers found that ?-like importins play a key role in JNK and p38 translocation. They also found that the translocation of these MAPKs is mediated by the formation of either Imp3/Imp7/MAPK or Imp3/Imp9MAPK heterodimers. Most importantly, the researchers identified the site in p38 that mediate the interaction with Imp7 and Imp9 and showed that the important sequence lies within residues 20-30 of p38?. Subsequently they synthesized a 14 amino acid myristoylated peptide based on the sequence of residues 21-34 of p38?. When it was applied to HeLa cells prior to stimulation, it prevented the nuclear translocation and Imp7/9 interaction of the MAPKs. Since the peptides of this technology are able to specifically inhibit the nuclear activities of p38 (such as inflammatory activities) without modulating their cytoplasmic activities, these peptides may serve as a therapeutic agent for inflammatory and apoptosis related diseases without having side effect.