



Coupling of Alternating Current to Transition Metal Catalysis

Material
Science

Reference Number: 2050 | Principal Investigator: Prof. Sergey Semenov | Patent Status: US-2023-0407492-A1, EP4214355

The coupling of transition-metal and photoredox catalytic cycles via single-electron transfer has become a powerful strategy in modern catalysis. While synthetic electrochemistry typically relies on direct current (DC), this technology introduces a method for coupling alternating current (AC) electrolysis with transition-metal catalysis, enabling enhanced catalytic reactions with improved yields and selectivity.

Demonstrated setup and AC-enabled Ni-catalyzed cross-coupling reactions

APPLICATIONS

- Catalytic systems where one or several steps can be accelerated by electrochemical oxidation/reduction
- Transition-metal catalytic reactions

DIFFERENTIATION

Expanded Potentials
beyond the solvent
electrochemical window

Efficient Redox
Reactions on the same
electrode

Adjustable Selectivity

Innovative Stirring-
free Reactor Design

Prevents electrode
fouling

DEVELOPMENT STAGE

The method is at TRL of 4. It has been used for a variety of catalysis processes, producing different amines, aryl bromides, carboxylic acids and alcohols.

REFERENCES

- [Bortnikov, E.O. & Semenov J. Org. Chem. 2021](#)

