Frontotemporal Dementia Diagnosis Using Circulating microRNA Biomarkers

(No. T4-2037)

Principal investigator

Eran Hornstein

Faculty of Biochemistry
Department of Molecular Genetics

Overview

Frontotemporal dementia (FTD) is difficult to diagnose due to overlapping symptoms with other neurodegenerative disorders, often leading to delays in treatment and clinical trial enrollment. This technology identifies a unique panel of 13 circulating microRNAs (miRNAs) in blood plasma, which serve as biomarkers for FTD. Using next-generation sequencing and machine learning, the method enables early, accurate diagnosis and improves patient selection for clinical trials.

Applications

- Early and accurate FTD diagnosis a€" Reduces misdiagnosis and diagnostic delays
- Clinical trial stratification Identifies FTD patients for drug development studies
- Monitoring drug response miRNA biomarkers serve as pharmacodynamic indicators

Advantages

- · Non-invasive and cost-effective
- High accuracy, ~90% classification accuracy
- Supports clinical decision-making and trial enrollment

Â

ROC in held-out data

Diagnosis of FTD by a distinctive cell-free miRNA signature

Development Stage

The technology has been validated in a cohort of 168 FTD patients and 125 controls using next-generation sequencing and machine learning, demonstrating high diagnostic accuracy. It is in the preclinical stage with strong potential for clinical translation.

Patent Status

USA Published: Publication Number: 2022-0364175-A1