Superconducting Quantum Memory with Tens of Milliseconds Coherence Time

(No. T4-2333)

Principal investigator

Serge ROSENBLUM

Physics
Department of Condensed Matter Physics

Overview

Quantum computing platforms based on superconducting qubits suffer from high error rates and short storage time of only a few milliseconds, limiting scalable computations. This invention integrates superconducting microwave cavity with a qubit on chip, minimizing lossy surface exposure while enabling high-fidelity quantum gates. By achieving coherence times above 30 ms, over an order of magnitude longer than the state of the art, it enable lowerror quantum memories for longer and more complex computations.

Applications

- Quantum memory modules in superconducting quantum computers based on Transmon, SNAIL, or Fluxonium qubits.
- Processing qubits in bosonic quantum computers.
- Quantum repeaters for long-distance quantum communication networks.
- Quantum sensors with high frequency resolution.

Differentiation

- Record-long coherence time: >30ms versus 2-3 ms in current devices
- Low-loss cavity design: Reduces photon loss by limiting electric-field surface exposure
- Weakly coupled Transmon lowers decoherence while maintaining fast quantum gates
- Enables bosonic quantum error correction (QEC)

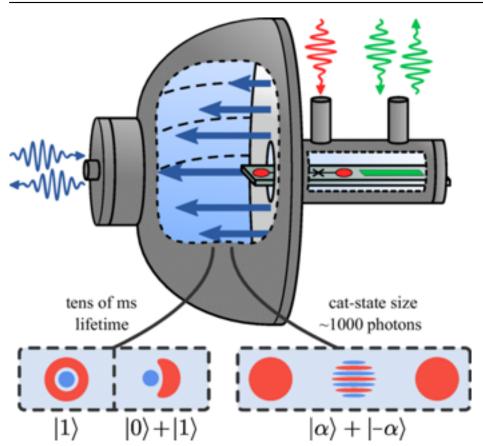


Illustration of the quantum memory

Development Stage

The technology has been demonstrated showing a superconducting quantum memory with a coherence times of 34 ms and photon-lifetime exceeding 25 ms. A proof-of-concept experiment successfully storages large SchrĶdinger-cat states containing 1,024 photons.