Immortalized Prostate Cell Cultures EP156T-Epithelial Prostate h-TERT Immortalized Cells

(No. M7-373)

Principal investigator

NAOMI Goldfinger

Biology

Department of Molecular Cell Biology

Principal investigator

Ira Kogan

Biology
Department of Molecular Cell Biology

Principal investigator

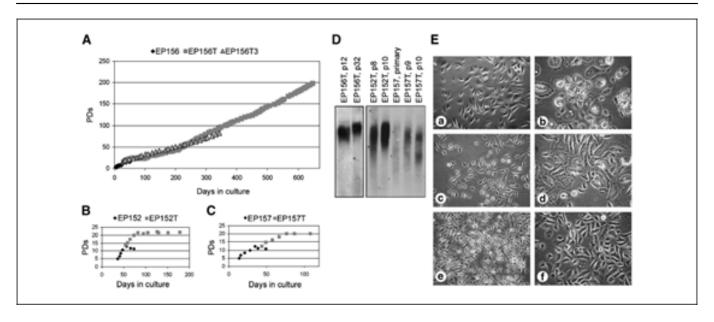
Varda Rotter

Faculty of Biology Department of Molecular Cell Biology

Overview

EP156 cells were derived from a radical prostatectomy specimen of a 66-year-old patient. Pathologic tumor stage was pT3a, Gleason score 7 (4 + 3). The specimen had a positive margin, meaning that the tumor extended the prostate capsule. Seminal vesicles were tumor-free.

The cells provide an authentic prostate microenvironment. They may serve as a suitable experimental platform to study the transformation of prostate cells and the stem cell origins of prostate cancer. Furthermore, they could be used as a model for prostate differentiation and cell-cell interactions


Relevant disease: Prostate cancer

Parental Line: Primary human prostate fibroblasts (PFs) (designated PF179; 179, patient number) were isolated from a prostatectomy specimen, marginal to the prostate tumor.

Host: human

Tissue: Prostate

Production details: Primary human prostate epithelial (hPEC) cultures were infected with a recombinant retrovirus encoding hTERT. Details can be found in the publication.

References

Kogan I, Goldfinger N, Milyavsky M, et al. hTERT-Immortalized Prostate Epithelial and Stromal-Derived Cells: an Authentic *In vitro* Model for Differentiation and Carcinogenesis. *Cancer Res.* 2006;66(7):3531-3540. doi:10.1158/0008-5472.CAN-05-2183 [1]