You are here

Novel target for the treatment of diet-induced obesity and diabetes (MTCH2)

Technology Number: 


Patent Status: 


MTCH2 as a novel target for the treatment of obesity.
Obesity is an escalating public health problem with an increasing prevalence worldwide, and a primary contingency of many life-threatening diseases, as well as early mortality. In the U.S. alone, more than one-third of adults are obese. Obesity-related conditions include heart disease, stroke, type 2 diabetes and certain types of cancer, some of the leading causes of preventable death. Physicians and patients alike consider the weight-loss efficacy of the current therapeutics to be unsatisfactory. Therefore, there is an unmet need for innovative options that are at once safe and efficacious, and allow the patient to maintain weight loss.
The present invention describes the identification of Mitochondrial Carrier Homolog 2 (MTCH2) as a novel player in muscle metabolism and the therapeutic potential of inhibiting MTCH2 for the treatment of diet-induced obesity and diabetes.


  • A fresh approach for targeting weight-related disorders
  • Direct effect on metabolism instead of indirect mechanisms of current therapeutics which target appetite modulation.
  • Protection from diet-induced obesity can be used as a prevention treatment for people with a tendency for weight gain.  

Technology's Essence

MTCH2 functions as a receptor-like protein for the pro-apoptotic BID protein in the mitochondria.
MTCH2 was identified as one of six new gene loci associated with Body Mass Index (BMI) and obesity in humans suggesting that MTCH2 may also play a role in metabolism.
MTCH2 was recently shown by the Gross’s lab to also function as a repressor of   mitochondria oxidative phosphorylation (OXPHOS) in the hematopoietic system.
Deletion of MTCH2 in skeletal muscle increases mitochondrial OXPHOS and mass, and increases capacity for endurance exercise. In addition, loss of MTCH2 increases mitochondria and glycolytic flux in muscles as measured by monitoring pyruvate and lactate levels.
MTCH2 knockout mice are protected from diet-induced obesity, hyperinsulinemia, and are more prone to weight loss upon caloric restriction.
Therefore, the association of MTCH2 with mitochondrial function offers a potential novel target for muscle metabolism modulation in the fight against metabolic disorders such as obesity and diabetes.


More technologies in Biotechnology, Pharma and Diagnostics