You are here

Category
Technology Name
Briefcase
Scientist
1583
The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa. Thermoelectric effects are used in various applications, where heat energy is saved, that would be otherwise lost. Although the TE conversion efficiency is nowadays low (5-8%), the novel...

The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa. Thermoelectric effects are used in various applications, where heat energy is saved, that would be otherwise lost. Although the TE conversion efficiency is nowadays low (5-8%), the novel technique developed at Weizmann Institute, has a disruptive potential to change this market.  

Prof. Y. Imry and his team at Weizmann Institute came up with Thermal Electric conversion technique, based on a new TE device architecture which allows performance enhancement. The core invention is in the field of Bi-junction thermoelectric device architecture, having a thermoelectric gate interposed between two electric regions, leading to thermal electric conversion efficiency optimization.

Applications


Various TE devices will benefit from better TE efficiency, achieved by the developed conversion technique. The growing market for thermoelectric energy harvesters will reach $865 million by 2023. Current TE market is driven by consumer energy harvesting applications and some niche segments:

  •  Automotive energy harvesting applications, since around 40% of the energy produced by internal combustion engines is currently lost in heat through the exhaust.
  • Wireless devices/sensors segment is forecasted to account for over a third of the overall market for thermoelectric harvesters and cooling by 2023.

Advantages


In order to drive down the thermoelectric module costs and facilitate broad deployment, TE has several barriers to overcome: 

  •  low conversion efficiency;
  • toxicity and low availability of chemical elements constituting part of the thermoelectric materials.

 In this context, the main TE market challenges are reaching higher efficiencies using low cost thermoelectric materials. These challenges can be addressed by the proposed technology.


Technology's Essence


Prof. Y. Imry and his team at Weizmann Institute have developed novel bi-junction TE device, having a thermoelectric gate interposed between two electric regions, aiming at TE efficiency improvement. Thermoelectric efficiency depends on the figure of merit (ZT). The figure-of-merit curves, for the developed 3-T TE device configurations show that higher ZT should be achieved.  

The secret essence of the invented configuration is in using two independently adjustable input parameters - voltage and temperature - as drivers for optimizing device thermoelectric efficiency.

 

+
  • Prof. Yoseph Imry
1662
Immunotherapy, that is the use of the immune system to treat cancer, is currently a leading candidate in the combat against cancer. Unlike the toxic effects of both chemotherapy and radiation, immunotherapy is considered to have mild side effects due to its ability to differentiate between healthy and...

Immunotherapy, that is the use of the immune system to treat cancer, is currently a leading candidate in the combat against cancer. Unlike the toxic effects of both chemotherapy and radiation, immunotherapy is considered to have mild side effects due to its ability to differentiate between healthy and cancerous cells. Also, the therapeutic role of the immune system is an essential element in the healing process due to bone marrow transplantation for hematologic malignancies.
However, a more efficacious and less toxic T cells based treatment is required. Effective therapy depends on the functional avidity between T cell receptors (TCRs) and peptide-MHC complex (pMHC). However the natural affinity of TCR is low and they do not naturally undergo the processes that improve antibody affinity, such as somatic hypermutation (SHM). Currently there is no method of increasing the affinity of a TCR to its ligand. Moreover there is no knowledge on how use affinity maturated TCRs for creating anti-tumor reactive cells
This technology presents a method of increasing the affinity of a TCR to its ligand. This is done by subjecting TCR genes to SHM via the enzyme Activation Induced cytidine Deaminase (AID). The technology further provides affinity maturated TCRs (in cell- bound or in soluble form) and their pharmaceutical potential for immunotherapy. 

Applications


  • Generating anti-tumor T cells
  • Generating T cells reactive against selected antigen

Advantages


  • Rapid
  • Effective

Technology's Essence


This novel technology reveals that the affinity of a TCR to its ligand may be increased remarkably by subjecting TCR genes to SHM, directed by AID.
First a nucleic acid construct encoding a TCR gene is expressed in a host cell. Next SHM is used to introduce mutations to the TCR gene. Last, the the cells will be analyzed for affinity maturation by tetramer staining and subsequently sorted by FACS.
There are three parallel approaches to perform affinity maturation for the TCR: (1) Ex-vivo affinity maturation system, using Tet-regulated expression of AID (2) Ex-vivo affinity maturation system, using controlled expression of AID by mRNA electrophoresis (3) In-vitro affinity maturation system, using extracts from cells that are in SHM and recombinant AID.

+
  • Prof. Rachel Lea Eisenbach
1556
Synthetic carbon fixation pathways can allow plants to produce more biomass using the same amount of energy from sunlight. Novel carbon fixation cycles discovered at The Weizmann Institute hold potential to greatly increase the capacity of organisms to convert atmospheric carbon into sugars. Modern...

Synthetic carbon fixation pathways can allow plants to produce more biomass using the same amount of energy from sunlight. Novel carbon fixation cycles discovered at The Weizmann Institute hold potential to greatly increase the capacity of organisms to convert atmospheric carbon into sugars.

Modern agriculture faces limited arable land and climate changes. Carbon fixation under these conditions will become a significant growth limiting factor. The proposed solution provides the ability to enhance crop yields using the same expanse of land.

The novel technology presents alternative synthetic carbon fixation pathways that were discovered by harnessing a systems biology approach. These pathways are predicted to harbor a significant kinetic advantage over their natural counter parts, making them promising candidates for synthetic biology implementation.

Applications


  • Synthetic organisms utilizing this revolutionary technology can offer higher carbon fixation rates as compared to natural alternatives allowing:
  • Superior rate of biomass generation, providing cost effective feedstock for the production of biofuels.
  • Enhanced food production via increased crop yields.

Advantages


  • Minimal thermodynamic bottlenecks and superior kinetics over natural counterparts.

Technology's Essence


The productivity of carbon fixation cycles is limited by the slow rate and lack of substrate specificity of the carboxylating enzyme, RuBisCo. In his discovery Dr. Milo addresses the inefficiency of the carbon fixation process through an alternative cycle that is predicted to be two to three times faster than the Calvin–Benson cycle, employing the most effective carboxylating enzyme, phosphoenolpyruvate carboxylase, using the core of the naturally evolved C4 cycle.

A computational strategy was applied, comparing kinetics, energetic and topology of all the possible pathways that can be assembled from all ~4,000 metabolic enzymes known in nature.

The results suggest a promising new family of synthetic carbon fixation pathways.

+
  • Prof. Ron Milo
1628
New generation of superior nature-inspired therapeutics for treating inflammation.Inflammation is characterized by elevated levels of TNF-?. Neutralizing TNF-? activity was shown to be beneficial for patients with chronic autoimmune inflammatory diseases such as rheumatoid arthritis (RA) and...

New generation of superior nature-inspired therapeutics for treating inflammation.Inflammation is characterized by elevated levels of TNF-?. Neutralizing TNF-? activity was shown to be beneficial for patients with chronic autoimmune inflammatory diseases such as rheumatoid arthritis (RA) and inflammatory bowel disease (IBD). However, current treatments of such conditions include general anti-inflammatory and immunosuppressive drugs that are of limited effectiveness and may cause serious side effects. Another class of drugs includes targeted therapies directed against TNF-?, that are associated with serious infections including tuberculosis (TB) and sepsis as well as increased risk of cancer in some cases. Thus, there is an urgent need for highly selective, safer and more effective drugs for inflammatory conditions that involve TNF-? as a key mediator. The present technology introduces a novel generation of candidate drugs that selectively inhibit the processing of TNF-?, thereby preventing it from exerting its pro-inflammatory properties. This technology provides a framework for the development of safer and more effective therapeutics for IBD and related autoimmune disorders.

Applications


  • Treatment of autoimmune inflammatory conditions such as IBD and RA.
  • Treatment of neuroinflammatory conditions such as multiple sclerosis (MS).
  • Treatment of other inflammatory mediated diseases such as psoriasis, systemic sclerosis and ankylosing spondylitis.
  • All MMPs and ADAMs proteases possess an autoinhibitory pro-domain and therefore this technology can be broadened to other MMP and ADAM targets.

Advantages


  • TACE pro-domain is highly potent and efficient.
  • TACE pro-domain is metabolically stable, unlike small molecule inhibitors of TACE.
  • Targeting TACE through nature-inspired protein design may constitute a safer approach to combat TNF-? induced inflammation.
  • Unlike non-specific small molecule inhibitors, which target the conserved catalytic zinc site of TACE, TACE pro-domain shares little homology to other MMPs, making it a good candidate for specific inhibitor of TACE.

Technology's Essence


The A disintegrin and metalloproteinase 17 (ADAM17), also known as tumor necrosis factor-? converting enzyme (TACE), has been defined as the major shedding protease for a broad range of substrates predominantly the key immuno-regulatory cytokines TNF-?. Cleavage by TACE renders TNF-? pro-inflammatory, highlighting ADAM17 as a rationale target for treatment of autoimmune diseases such as IBD and arthritis. A team of researchers at the Weizmann institute headed by Prof. Irit Sagi, has employed a sophisticated approach towards TACE targeting by exploiting its autoinhibitory pro-domain as a platform for the ‘smart design’ of TACE selective natural inhibitors. The therapeutic potential of TACE pro-domain was demonstrated in IBD mouse models, where TACE pro-domain administration showed significant improvement in multiple parameters such as reduced mortality and weight lost, in a dose dependent manner. Additional in vivo studies demonstrated that the TACE pro-domain is highly stable in vivo and harbors specificity towards the activated immune cells located in colon lesions. Thus, the novel TACE inhibitor presented in this technology leads to significant therapeutic effects and is beneficial in controlling inflammation in IBD disease manifestations in mice.

+
  • Prof. Irit Sagi
1021
A method for mapping and correcting optical distortion conferred by live cell specimens in microscopy that cannot be overcome using optical techniques alone can be used both for light microscopy and confocal microscopy. The system determines the 3D refractive index for the samples, and provides a...

A method for mapping and correcting optical distortion conferred by live cell specimens in microscopy that cannot be overcome using optical techniques alone can be used both for light microscopy and confocal microscopy. The system determines the 3D refractive index for the samples, and provides a method for ray tracing, calculation of 3D space variant point spread, and generalized deconvolution.

Applications


Microscopy: The method was developed and applied for light microscopy, and is of critical importance for detection of weak fluorescently labeled molecules (like GFP fusion proteins) in live cells. It may be applicable also to confocal microscopy and other imaging methods like ultrasound, deep ocean sonar imaging, radioactive imaging, non-invasive deep tissue optical probing and photodynamic therapy. Gradient glasses: The determination of the three-dimensional refractive index of samples allows testing and optimization of techniques for production of gradient glasses. Recently continuous refractive index gradient glasses (GRIN, GRADIUM) were introduced, with applications in high quality optics, microlenses, aspherical lenses, plastic molded optics etc. Lenses built from such glasses can be aberration-corrected at a level, which required doublets and triplets using conventional glasses. Optimized performance of such optics requires ray tracing along curved path, as opposed to straight segments between surface borders of homogeneous glass lenses. Curved ray tracing is computation-intensive and dramatically slows down optimization of optical properties. Our algorithm for ray tracing in gradient refractive index eliminates this computational burden.

Technology's Essence


A computerized package to process three-dimensional images from live biological cells and tissues was developed in order to computationally correct specimen induced distortions that cannot be achieved by optical technique. The package includes: 1. Three-dimensional (3D) mapping of the refractive index of the specimen. 2. Fast method for ray tracing through gradient refractive index medium. 3. Three-dimensional space variant point spread function calculation. 4. Generalized three-dimensional deconvolution.

+
  • Prof. Zvi Kam
1447
A cheap and effective solution for protecting RFID tags from power attacks. RFID tags are secure tags present in many applications (e.g. secure passports). They are poised to become the most far-reaching wireless technology since the cell phone, with worldwide revenues expected to reach $2.8 billion in...

A cheap and effective solution for protecting RFID tags from power attacks.

RFID tags are secure tags present in many applications (e.g. secure passports). They are poised to become the most far-reaching wireless technology since the cell phone, with worldwide revenues expected to reach $2.8 billion in 2009. RFID tags were believed to be immune to power analysis attacks since they have no direct connection to an external power supply. However, recent research has shown that they are vulnerable to such attacks, since it is possible to measure their power consumption without actually needing either tag or reader to be physically touched by the attacker. Furthermore, this attack may be carried out even if no data is being transmitted between the tag and the attacker, making the attack very hard to detect. The current invention overcomes these problems by a slight modification of the tag's electronic system, so that it will not be vulnerable to power analysis.

Applications


  • Improved security of RFID tags.

Advantages


  • Simple and cost-effective
  • The design involves changes only to the RF front-end of the tag, making it the quickest to roll-out


Technology's Essence


An RFID system consists of a high-powered reader communicating with a tag using a wireless medium. The reader generates a powerful electromagnetic field around itself and the tag responds to this field. In passive systems, placing a tag inside the reader's field also provides it with the power it needs to operate. According to the inventive concept, the power consumption of the computational element is detached from the power supply of the tag. Thus, the present invention can almost eliminate the power consumption information.

+
  • Prof. Adi Shamir
1518
Improved immunotherapy for breast cancer. Monoclonal antibodies (mAbs) to ErbB-2/HER2 growth factor receptor, or to its sibling, the epidermal growth factor receptor (EGFR), prolong survival of cancer patients, especially when combined with cytotoxic therapies. However, low effectiveness of...

Improved immunotherapy for breast cancer.

Monoclonal antibodies (mAbs) to ErbB-2/HER2 growth factor receptor, or to its sibling, the epidermal growth factor receptor (EGFR), prolong survival of cancer patients, especially when combined with cytotoxic therapies. However, low effectiveness of therapeutic mAbs and the evolution of patient resistance call for improvements. Furthermore, the response to the clinically approved monotherapy of Herceptin (a humanized mAb directed against ErbB-2), is relatively low (~15%) and short lived (median duration, 9 months). Therefore, there is a need to improve the therapeutic treatment against this receptor. The present technology enhances the therapeutic activity of anti-ErB-2 receptor antibodies, by combining two or more epitope-distinct antibodies.

Applications


  • Improved treatment of ErbB-2-overexpressing tumors (e.g. in breast and ovary cancers).


Advantages


  • May enhance patient response and delay acquisition of resistance.
  • Enhancement of therapeutic efficacy and synergy with chemotherapy.

Technology's Essence


Optimal selection of mAbs for cancer immunotherapy may improve its therapeutic potential. The outlined technology addresses an emerging strategy, which enhances the therapeutic activity of anti-receptor antibodies by combining two mAbs engaging distinct epitopes. It was demonstrated that pairs of anti-ErbB-2 mAbs better inhibit ErbB-2-overexpressing tumors than the respective individual mAbs, both in vitro and in vivo.

+
  • Prof. Yosef Yarden
1267
Description: Monoclonal antibodies specific for cholesterol/ceramide-rich domains (clones 405F, 14F, 499F) and cholesterol micro-domains (clones 36A1, 5881) in cell membranes. Originally raised against an artificial monolayer of lipid mixtures in, and were shown to specifically label the above domains...

Description: Monoclonal antibodies specific for cholesterol/ceramide-rich domains (clones 405F, 14F, 499F) and cholesterol micro-domains (clones 36A1, 5881) in cell membranes. 
Originally raised against an artificial monolayer of lipid mixtures in, and were shown to specifically label the above domains in different cell membranes. 
Reference:  Scheffer L, Futerman AH, Addadi L. 2007. Antibody labeling of cholesterol/ceramide ordered domains in cell membranes. Chembiochem 8(18):2286-94.

M263, M264, M265

+
  • Prof. Lia Addadi
1121
A method for aligning video images according to sequence. The problem of image alignment has been extensively studied, and successful approaches have been developed for solving this problem. However, these approaches turn out as problematic when there is insufficient overlap between the two images to...

A method for aligning video images according to sequence. The problem of image alignment has been extensively studied, and successful approaches have been developed for solving this problem. However, these approaches turn out as problematic when there is insufficient overlap between the two images to allow extraction of common image properties, i.e., when there is no sufficient similarity (e.g., gray-level, frequencies, statistical) between the two images. Whereas two individual images cannot be aligned when there is no spatial overlap between them, this is not the case when dealing with image sequences. The outlined technology consists of fusion and alignment of discrete, non-overlapping moving images from different sources, by aligning spatio-temporal changes in each sequence rather than in each image.

Applications


  • Multi-sensor image alignment for multi-sensor fusion
  • Alignment of images (sequences) obtained at significantly different zooms (can be useful in surveillance applications)
  • Generation of wide-screen movies from multiple non-overlapping narrow field-of-view movies (such as in IMAX movies) 
  • Alignment and integration of information across video sequences to exceed the physical visual limitations of any individual sensor (e.g., dynamic range, spectral range, spatial resolution, temporal resolution, etc). ~

Advantages


  • Useful for spatially non-overlapping sequences
  • Useful in cases which are inherently difficult for standard image alignment techniques, such as when there is insufficient common spatial information across the two sequences

Technology's Essence


An image sequence contains much more information than any individual image frame does. In particular, temporal changes in a video sequence (e.g., due to camera motion) do not appear in any individual image frame, but are encoded between video frames. When these temporal changes are common to the two sequences, then these sequences can be aligned both in time and in space, even if there is no common spatial information whatsoever. The need for coherent visual appearance, which is a fundamental assumption in image alignment methods, is replaced in this invention with the requirement of coherent temporal behavior. This can be achieved by attaching the two video cameras closely to each other (so that their centers of projections are very close), and moving them jointly in space (e.g., such as when the two cameras are mounted on a moving platform or rig).

 

Click here for additional information
Click here to visit Prof. Irani`s Homepage

+
  • Prof. Michal Irani
1481
In recent years, there has been a growing interest in the development of nanoscale magnetic and thermal characterization tools in order to address rapidly evolving fields, such as nanomagnetism, spintronics and energy-efficient computing. The requirements from these tools include high sensitivity and...

In recent years, there has been a growing interest in the development of nanoscale magnetic and thermal characterization tools in order to address rapidly evolving fields, such as nanomagnetism, spintronics and energy-efficient computing. The requirements from these tools include high sensitivity and high spatial resolution to enable local detection and accurate measurements of extremely low signals. For example, the energy dissipation mechanism in quantum systems is related to preservation of quantum information, which is of particular importance in the field of quantum computing. Available local magnetic imaging methods suffer from low sensitivity and in some cases, low spatial resolution. On the other hand, energy dissipation is not a readily measurable quantity on the nanometer scale and existing thermal imaging methods are not sensitive enough for studying quantum systems and are unsuitable for low temperature operation.

A novel sensor device comprising a nanoscale superconducting quantum interference device (SQUID) was developed by Prof. Zeldov at the Weizmann Institute of Science. The fabrication method enables the miniaturization of the sensor to an effective diameter of below 50 nm and its integration onto the apex of a very sharp tip that is ideally suited for scanning probe microscopy. The extremely small size of the SQUID-on-tip sensor and the ability to approach very close to the sample surface result in nano-metric spatial resolution and a very sensitivity.

Applications


·         Scanning probe microscopy for magnetic and thermal characterization

·         Inspection and probing equipment for quantum computing


Advantages


  • Simple fabrication process

  • High field sensitivity and bandwidth

  • Nanoscale sensors (down to 46 nm in diameter)

  • Tip-sample distance can be as close as a few nanometers


Technology's Essence


A SQUID is a very sensitive magnetometer used to measure extremely subtle magnetic fields, based on superconducting loops. The present invention is a novel sensor device, based on a nanoscale two-junction or multi-junction SQUIDs fabricated on the edge of a sharp tip in a three dimensional geometric configuration. In such a setup, the SQUID can approach the sample to a distance of few nanometers, as opposed to the conventional planar SQUIDs, which results in an extremely high sensitivity.

+
  • Prof. Eli Zeldov
1529
We present an efficient and robust broadband crystal optical conversion device. Various applications of laser optics require tunable laser sources. Currently, most frequency conversion devices rely on a single non-linear crystal, which is either temperature or angle tuned to enhance efficiency. This...

We present an efficient and robust broadband crystal optical conversion device. Various applications of laser optics require tunable laser sources. Currently, most frequency conversion devices rely on a single non-linear crystal, which is either temperature or angle tuned to enhance efficiency. This results only in a narrow efficient spectral band of conversion. Other techniques such as periodic quasi-phase matching result in improved efficiencies but still within a narrow predetermined band. Random quasi-phase matching results in improved bandwidth but in a significant reduction in efficiency. This new device enables ultra-broadband wavelength conversion while maintaining high efficiency.

Applications


  • Laser optics industry
  • Frequency convertor for broadband signals
  • Generation of ultrafast visible radiation
  • Pulse selection.

Advantages


  • 90% efficiency of conversion process.
  • Simple and compact
  • Insensitive to the deviations in alignment, no dependence of the angle incidence beam or of temperature
  • Frequency converter of both broadband signals and ultra-short pulses.

Technology's Essence


This device is based on a new method of adiabatic wavelength conversion. The device works whereby a strong narrow-band pump is introduced into the crystal along with a weaker pulse to be converted. This conversion is realized in a quasi-phase matched nonlinear crystal, where the period is tuned adiabatically from strong negative phase-mismatch to strong positive phase-mismatch (or vice versa). This results in the efficient transformation of the weaker pulse.

+
  • Prof. Yaron Silberberg
1369
A simple, single-step biochip platform for synthesis of biomolecules. Biochip technology is used today in measuring passive probe-target interactions i.e. measurement of the abundance of specific biomolecules). This technology can now be extended to include complex and cascaded activities on the chip...

A simple, single-step biochip platform for synthesis of biomolecules.

Biochip technology is used today in measuring passive probe-target interactions i.e. measurement of the abundance of specific biomolecules). This technology can now be extended to include complex and cascaded activities on the chip. The present immobilization approaches (based on UV photography) have been essentially limited to short single stranded DNA probes and have not been developed for entire genes or other biochemical functions. Furthermore, most biochips are assembled in a multi-step process that requires expertise in surface chemistry in order to obtain reproducibility and robustness. As a result, light-directed immobilization of molecules on biochips is not widespread and is not easily accessible for research and technology development. The present invention enables, in a simple manner, to immobilize different biomolecules anywhere on the chip to submicron resolution through selective exposure of the monolayer to UV light.

 

Applications


  • Light-directed immobilization of a variety of different biomolecules (e.g. DNA, antibodies, enzymes and peptides)
  • On-chip protein biosynthesis from immobilized genes
  • Design and layout of on-chip traps for proteins from crude cell extract
  • Lab-on-a-chip that provides a general use biochip technology

Advantages


  • Enabling the use of long DNA molecules (whole genes)
  • Robust and simple performance without the need for proficiency in materials science and surface chemistry
  • On-chip protein synthesis with high efficiency, minimal non-specific activity, and a wide dynamic range

 


Technology's Essence


This lab-on-a-chip technology (i.e. a technology that enables to perform laboratory operations on a small scale) is based on a newly synthesized molecule termed daisy that combines three parts all-in-one: a tail and head connected by a backbone. Selective exposure of daisy monolayer to UV light through a mask (photolithography) reveals the surface for chemical binding of a variety of biomolecules. Using this technology it is possible to immobilize different biomolecules anywhere on the chip to submicron resolution. By immobilizing whole genes, thus enabling cell-free biosynthesis of proteins, daisy technology takes the lab-on-a-chip concept to the next level. Daisy biochip technology holds a promise in proteomics, diagnostics and therapeutics.

+
  • Prof. Roy Bar-Ziv
1166
A series of monoclonal antibodies for monitoring hormone and drug additives in animals grown for the food industry. These include mAbs for peptide hormones, steroid hormones, drugs, leukotrienes, isoflavones, and veterinary drugs.

A series of monoclonal antibodies for monitoring hormone and drug additives in animals grown for the food industry. These include mAbs for peptide hormones, steroid hormones, drugs, leukotrienes, isoflavones, and veterinary drugs.

Applications


Monitoring hormone and drug additives in food providing animals for veterinary use and for the food industry.

Technology's Essence


Researchers at the Weizmann Institute of Science have developed a series of mAb against peptide and steroid hormones, isoflavones, and human and veterinary drugs. These antibodies are particularly valuable for monitoring hormone and drug additives in food providing animals. The mAb are available for diagnostics, research, and therapeutics.

The following mAb are available for licensing:

(Clones marked with * are available for diagnostic and therapeutic use only).

Peptide Hormones:
LH: 4F10
bFSH: 1G12*, 1H9, 1H7
FSH: 6H6
bHCG: 1D5
bHCG+: 1C7 3F11
HGH: 1C12*, 1C4*, 5E9, 4E12, 5C3, 1C5, 6G3, 5E6, 2C12

Steroid Hormones:
progesterone-11a-HS 1E11*
progesterone-7a-CET 2H4
Estrone-3-glucuronide 8A3
Testosterone-3-CMO 5A4
Testosterone-3-CMO 5F2*
Estradiol-6-CMO 8D9*

Anti-idiotypic antibodies to anti-steroids:
betatypic anti-anti-testosterone 5A4 8G9
betatypic anti-progesterone 2H4 15F11
betatypic anti-anti-estrone-3-glucuronide 8A3 7C1
alphatypic anti-progesterone 2H4 2E11
betatypic anti-anti-estrone-3-glucuronide 8A3 11C1

Drugs
Digoxin 10F10
RU-486* 8B6*
Buserelin 8B4
Medroxy-progesterone-acetate* 1F5*

Leukotrienes
LTC4* 6E7

Biotin
Biotin-BSA F1

Isoflavones
Daidzein 4E4
Daidzein/daidzin/genistin 2F11
Estrone-3-glucuronide 8A3
Genistein/biochanin A 10D8
Genistein/genistin/daidzin 6E8
Betatypic anti-anti-genistein 10D8

Veterinary drugs
Sulfamethazine (SMZ) 21C7
Betatypic anti-SMZ 12E12
4-chloro-androstenedione 14H2
Virginamycin 486
Spiramycin 110
Betatypic anti-anti-spiramycin 133

+
  • Dr. Fortune Kohen
1392
A catalytic based reaction for the treatment of industrial waste water. Millions of tons of organic chemical compounds - including solvents, petrochemicals, agrochemicals, and pharmaceuticals - are produced every year by a wide variety of chemical industries. Two immediate problems arise: 1. Industrial...

A catalytic based reaction for the treatment of industrial waste water. Millions of tons of organic chemical compounds - including solvents, petrochemicals, agrochemicals, and pharmaceuticals - are produced every year by a wide variety of chemical industries. Two immediate problems arise: 1. Industrial production of these chemicals and/or other products leads to effluent streams - highly toxic, contaminated aqueous solutions - from factories. These effluents must be treated prior to release of the water back into the environment. 2. Following use, these chemicals (e.g., agrochemicals, pharmaceuticals) become serious pollutants as they eventually find their way into the soil, sediment, and surface and/or groundwater environments. Current treatment methods are severely limited. Treatment of effluent streams by, e.g., filtration, photocatalysis, or bioreactors is often highly ineffective - the waste compounds not being easily captured, degraded or transformed - and/or prohibitively expensive.

Applications


  • Detoxification of industrial effluents, especially from petrochemical, agrochemical and pharmaceutical industries 
  • Waste water decontamination 
  • In situ and ex situ remediation of water polluted by organic and other contaminants

Advantages


  • Cost efficient
  • Quick

Technology's Essence


Researchers at the Weizmann Institute of Science have developed a new process for degradation and/or treatment of practically any organic contaminant in aqueous solutions under oxidizing (aerobic) conditions. A suite of catalytic materials has been developed which allows both in situ and ex situ remediation of polluted water by oxidative chemical degradation of contaminants. The technology eliminates or reduces a broad range of water pollutants - industrial organic solvents, petrochemicals, agrochemicals and pharmaceuticals (e.g., endocrine disruptors such as antiobiotics and hormones) - and is particularly effective for treating concentrated industrial effluents, under technically convenient conditions. The reaction products consist essentially of benign materials.

+
  • Prof. Brian Berkowitz
1503
Application of Ureides-class compounds protects plants from stress related senescence, effectively extending the shelf-life of vegetables, fruit, leafy greens, cut branches and flowers. Plants suffer damage from factors such as oxidative stress, premature senescence and chlorophyll degradation. All of...

Application of Ureides-class compounds protects plants from stress related senescence, effectively extending the shelf-life of vegetables, fruit, leafy greens, cut branches and flowers.

Plants suffer damage from factors such as oxidative stress, premature senescence and chlorophyll degradation. All of the above can impact the freshness of produce from harvest to end-consumer. Researchers at the Weizmann Institute found that under certain stress conditions model plants produce Ureides, shown to have a protective role. Unexpectedly, this protection can also be achieved by the exogenous application to plants or plant parts post-harvest.

This innovative technique to preserve and prolong the shelf-life of fresh produce is clean, organic and cost-effective. In addition, engineered strains with altered Ureides metabolism can prove more resistant to stress related senescence.

Applications


  • Post-harvest protection of produce via
  • Exogenous application (spray on leaves, add to roots etc.).
  • Incorporation in packaging (e.g. embedded in plastic film).

Advantages


  • Treatment of both aging and light-deprivation in plants
  • Readily available and easily applied, does not require expertise to protect produce
  • Organic, clean, biodegradable materials.

Technology's Essence


Prof. Robert Fluhr and his team found that in wild-type plants conditions of extended darkness or increasing leaf age caused induction of transcripts related to purine catabolism, resulting in marked accumulation of Ureides. In contrast, Arabidopsis mutants of XDH, Atxdh1, accumulated the Ureides precursor (Xanthine) and showed premature senescence symptoms such as enhanced chlorophyll degradation, extensive cell death and upregulation of senescence-related transcripts.

The level of plant reactive oxygen species (ROS) and mortality can be attenuated by the addition of Ureides, suggesting that these metabolites can act as scavengers of ROS. The results highlighted that the regulation of Ureides levels by Atxdh1 has implications for optimal plant survival during nutrient remobilization, such as occurs during normal growth, dark stress and senescence.

+
  • Prof. Robert Fluhr

Pages