You are here

Category
Technology Name
Briefcase
Scientist
1267
Description: Monoclonal antibodies specific for cholesterol/ceramide-rich domains (clones 405F, 14F, 499F) and cholesterol micro-domains (clones 36A1, 5881) in cell membranes. Originally raised against an artificial monolayer of lipid mixtures in, and were shown to specifically label the above domains...

Description: Monoclonal antibodies specific for cholesterol/ceramide-rich domains (clones 405F, 14F, 499F) and cholesterol micro-domains (clones 36A1, 5881) in cell membranes. 
Originally raised against an artificial monolayer of lipid mixtures in, and were shown to specifically label the above domains in different cell membranes. 
Reference:  Scheffer L, Futerman AH, Addadi L. 2007. Antibody labeling of cholesterol/ceramide ordered domains in cell membranes. Chembiochem 8(18):2286-94.

M263, M264, M265

+
  • Prof. Lia Addadi
1151
A method to significantly shorten acquisition times of high-quality MRI images. Multidimensional nuclear magnetic resonance (NMR) is used nowadays in many applications (e.g., discovery of new pharmaceutical drugs, characterization of new catalysts, and investigation of the structure and dynamics of...

A method to significantly shorten acquisition times of high-quality MRI images.

Multidimensional nuclear magnetic resonance (NMR) is used nowadays in many applications (e.g., discovery of new pharmaceutical drugs, characterization of new catalysts, and investigation of the structure and dynamics of proteins). One drawback of this technique is that, by contrast to one-dimensional spectroscpic methods, multidimensional NMR requires relatively long measurement times associated with hundreds or thousands of scans. This places certain kinds of rapidly-changing systems in Chemistry outside the scope of the technique. Long acquisition times also make this technique ill-suited for in vivo analyses and for clinical measurements in combination with magnetic resonance imaging (MRI). The current technology allows for the acquisition of multidimentional NMR scans using a single continuous scan, thereby shortening the time needed to acquire high-quality MRI images.

Applications


  • In vivo diagnostics

  • High-throughput proteomics/metabonomics

  • NMR of unstable chemical systems

  • Metabolic dynamics

  • High-resolution NMR in tabletop systems

  • Extensions to non-MR spectroscopies


Advantages


  • Can shorten the acquisition time of any multidimensional spectroscopy experiment by orders of magnitude
  • Compatible with the majority of multidimensional pulse sequences
  • Can be implemented using conventional NMR and MRI hardware

Technology's Essence


The outlined approach, called ultrafast multidimensional NMR, significantly expedites the analysis of the electromagnetic sounds produced, making it possible to acquire complete multidimensional NMR spectra within a fraction of a second. This technology “slices up” the molecular sample into numerous thin layers and then simultaneously performs all the measurements required on every one of these slices. The protocol then integrates these measurements according to their precise location, generating an image that amounts to a full multidimensional spectrum from the entire sample.

+
  • Prof. Lucio Frydman
1522
A method for enhancing the spatial and or temporal resolution (if applicable) of an input signal such as images and videos.   Many imaging devices produce signals of unsatisfactory resolution (e.g. a photo from a cell-phone camera may have low spatial resolution or a video from a web camera may have...

A method for enhancing the spatial and or temporal resolution (if applicable) of an input signal such as images and videos.

 

Many imaging devices produce signals of unsatisfactory resolution (e.g. a photo from a cell-phone camera may have low spatial resolution or a video from a web camera may have both spatial and temporal low resolution). This method applies digital processing to reconstruct more satisfactory high resolution signals.

 

Previous methods for Super-Resolution (SR) require multiple images of the same scene, or else an external database of examples. This method provides the ability to perform SR from a single image (or a single visual source). The algorithm exploits the inherent local data redundancy within visual signals (redundancy both within the same scale, and across different scales).

 

Examples of the methods' capabilities can be found here: http://www.wisdom.weizmann.ac.il/~vision/SingleImageSR.html

 

Applications


  • Enhancing the spatial resolution of images

  • Enhancing the spatial and or temporal resolution of video sequences

  • Enhancing the spatial and or temporal resolution (if applicable) of other signals (e.g., MRI, fMRI, ultrasound, possibly also audio, etc.)

 


Advantages


  • No need for multiple low resolution sources or the use of an external database of examples.

  • Superior results are produced due to exploitation of inherent information in the source signal.


Technology's Essence


The framework combines the power of classical multi image super resolution and example based super resolution. This combined framework can be applied to obtain super resolution from as little as a single low-resolution signal, without any additional external information. The approach is based on an observation that patches in a single natural signal tend to redundantly recur many times inside the signal, both within the same scale, as well as across different scales.

Recurrence of patches within the same scale (at subpixel misalignments) forms the basis for applying the 'classical super resolution' constraints to information from a single signal. Recurrence of patches across different (coarser) scales implicitly provides examples of low-resolution / high-resolution pairs of patches, thus giving rise to 'example-based super-resolution' from a single signal (but without any external database or any prior examples).

+
  • Prof. Michal Irani
1481
In recent years, there has been a growing interest in the development of nanoscale magnetic and thermal characterization tools in order to address rapidly evolving fields, such as nanomagnetism, spintronics and energy-efficient computing. The requirements from these tools include high sensitivity and...

In recent years, there has been a growing interest in the development of nanoscale magnetic and thermal characterization tools in order to address rapidly evolving fields, such as nanomagnetism, spintronics and energy-efficient computing. The requirements from these tools include high sensitivity and high spatial resolution to enable local detection and accurate measurements of extremely low signals. For example, the energy dissipation mechanism in quantum systems is related to preservation of quantum information, which is of particular importance in the field of quantum computing. Available local magnetic imaging methods suffer from low sensitivity and in some cases, low spatial resolution. On the other hand, energy dissipation is not a readily measurable quantity on the nanometer scale and existing thermal imaging methods are not sensitive enough for studying quantum systems and are unsuitable for low temperature operation.

A novel sensor device comprising a nanoscale superconducting quantum interference device (SQUID) was developed by Prof. Zeldov at the Weizmann Institute of Science. The fabrication method enables the miniaturization of the sensor to an effective diameter of below 50 nm and its integration onto the apex of a very sharp tip that is ideally suited for scanning probe microscopy. The extremely small size of the SQUID-on-tip sensor and the ability to approach very close to the sample surface result in nano-metric spatial resolution and a very sensitivity.

Applications


·         Scanning probe microscopy for magnetic and thermal characterization

·         Inspection and probing equipment for quantum computing


Advantages


  • Simple fabrication process

  • High field sensitivity and bandwidth

  • Nanoscale sensors (down to 46 nm in diameter)

  • Tip-sample distance can be as close as a few nanometers


Technology's Essence


A SQUID is a very sensitive magnetometer used to measure extremely subtle magnetic fields, based on superconducting loops. The present invention is a novel sensor device, based on a nanoscale two-junction or multi-junction SQUIDs fabricated on the edge of a sharp tip in a three dimensional geometric configuration. In such a setup, the SQUID can approach the sample to a distance of few nanometers, as opposed to the conventional planar SQUIDs, which results in an extremely high sensitivity.

+
  • Prof. Eli Zeldov
1369
A simple, single-step biochip platform for synthesis of biomolecules. Biochip technology is used today in measuring passive probe-target interactions i.e. measurement of the abundance of specific biomolecules). This technology can now be extended to include complex and cascaded activities on the chip...

A simple, single-step biochip platform for synthesis of biomolecules.

Biochip technology is used today in measuring passive probe-target interactions i.e. measurement of the abundance of specific biomolecules). This technology can now be extended to include complex and cascaded activities on the chip. The present immobilization approaches (based on UV photography) have been essentially limited to short single stranded DNA probes and have not been developed for entire genes or other biochemical functions. Furthermore, most biochips are assembled in a multi-step process that requires expertise in surface chemistry in order to obtain reproducibility and robustness. As a result, light-directed immobilization of molecules on biochips is not widespread and is not easily accessible for research and technology development. The present invention enables, in a simple manner, to immobilize different biomolecules anywhere on the chip to submicron resolution through selective exposure of the monolayer to UV light.

 

Applications


  • Light-directed immobilization of a variety of different biomolecules (e.g. DNA, antibodies, enzymes and peptides)
  • On-chip protein biosynthesis from immobilized genes
  • Design and layout of on-chip traps for proteins from crude cell extract
  • Lab-on-a-chip that provides a general use biochip technology

Advantages


  • Enabling the use of long DNA molecules (whole genes)
  • Robust and simple performance without the need for proficiency in materials science and surface chemistry
  • On-chip protein synthesis with high efficiency, minimal non-specific activity, and a wide dynamic range

 


Technology's Essence


This lab-on-a-chip technology (i.e. a technology that enables to perform laboratory operations on a small scale) is based on a newly synthesized molecule termed daisy that combines three parts all-in-one: a tail and head connected by a backbone. Selective exposure of daisy monolayer to UV light through a mask (photolithography) reveals the surface for chemical binding of a variety of biomolecules. Using this technology it is possible to immobilize different biomolecules anywhere on the chip to submicron resolution. By immobilizing whole genes, thus enabling cell-free biosynthesis of proteins, daisy technology takes the lab-on-a-chip concept to the next level. Daisy biochip technology holds a promise in proteomics, diagnostics and therapeutics.

+
  • Prof. Roy Bar-Ziv
1245

Applications


The novel DNA Aptamer is a promising candidate for therapeutic as well as diagnostic uses: Therapeutic: A novel therapy for Influenza Diagnostics: Detection of Influenza infection in vertebrates such as avian, swine and human

Technology's Essence


Scientists at the Weizmann Institute of Science describe a novel oligonucleotide, also known as an Aptamer, which has been designed to complement the receptor-binding region of the influenza haemagglutinin molecule. It was constructed by screening a DNA library and processing by the SELEX procedure. This DNA Aptamer comprises of a polynucleotide sequence that can bind to a polypeptide within the binding region of the influenza virus to the host cell. The proposed mode of action of this Aptamer is by blocking the binding of influenza virus to target cell receptors and consequently preventing the virus invasion into the host cells. Aptamer is capable of inhibiting the haemagglutinin capacity of the virus and the viral infectivity in vitro. Furthermore, it was shown in an animal model to inhibit viral infection by different influenza strains, as manifested by up to 99% reduction of virus burden in the lungs of treated mice.

+
  • Prof. Ruth Arnon
1499
Bladder cancer is a common malignancy; it is the 4th most common cancer in males and the 9th in females.  The presenting symptom is usually blood in the urine, and diagnosis is currently based on cystoscopy, which is invasive, costly, painful and time consuming.  To date, no biomarker has been...

Bladder cancer is a common malignancy; it is the 4th most common cancer in males and the 9th in females.  The presenting symptom is usually blood in the urine, and diagnosis is currently based on cystoscopy, which is invasive, costly, painful and time consuming.  To date, no biomarker has been identified in the urine that might be used for screening, staging, prognosis and monitoring treatment.  We now report that the amount of the 60 kDa heat shock protein (HSP60) in a subject’s urine is a biomarker for muscle invasion in patients with bladder cancer – stage T2 and higher.  Moreover, subjects with stage T1 disease can be stratified by their urine levels of HSP60 into a sub-group likely to progress into stage T2 or into a sub-group more likely to respond to conservative treatment with BCG, which does not require removal of the bladder.  The distinction between these two sub-groups of T1 bladder cancer can identify earlier subjects in need of cystectomy, while sparing others unnecessary major surgery.

Applications


  • Screening subjects with overt hematuria, or at risk of developing bladder cancer (such as heavy smokers)
  • tratifying bladder cancer subjects
  • Prognosis
  • Determining treatment program
  • Monitoring response to therapy.

Advantages


  • Non-invasive
  • Easy to apply
  • Relatively inexpensive
  • Prognositic.

Technology's Essence


Quantitative measurement of HSP60 levels in a subject’s urine by ELISA, radio-immunoassay or other simple assays.

+
  • Prof. Irun R. Cohen
1392
A catalytic based reaction for the treatment of industrial waste water. Millions of tons of organic chemical compounds - including solvents, petrochemicals, agrochemicals, and pharmaceuticals - are produced every year by a wide variety of chemical industries. Two immediate problems arise: 1. Industrial...

A catalytic based reaction for the treatment of industrial waste water. Millions of tons of organic chemical compounds - including solvents, petrochemicals, agrochemicals, and pharmaceuticals - are produced every year by a wide variety of chemical industries. Two immediate problems arise: 1. Industrial production of these chemicals and/or other products leads to effluent streams - highly toxic, contaminated aqueous solutions - from factories. These effluents must be treated prior to release of the water back into the environment. 2. Following use, these chemicals (e.g., agrochemicals, pharmaceuticals) become serious pollutants as they eventually find their way into the soil, sediment, and surface and/or groundwater environments. Current treatment methods are severely limited. Treatment of effluent streams by, e.g., filtration, photocatalysis, or bioreactors is often highly ineffective - the waste compounds not being easily captured, degraded or transformed - and/or prohibitively expensive.

Applications


  • Detoxification of industrial effluents, especially from petrochemical, agrochemical and pharmaceutical industries 
  • Waste water decontamination 
  • In situ and ex situ remediation of water polluted by organic and other contaminants

Advantages


  • Cost efficient
  • Quick

Technology's Essence


Researchers at the Weizmann Institute of Science have developed a new process for degradation and/or treatment of practically any organic contaminant in aqueous solutions under oxidizing (aerobic) conditions. A suite of catalytic materials has been developed which allows both in situ and ex situ remediation of polluted water by oxidative chemical degradation of contaminants. The technology eliminates or reduces a broad range of water pollutants - industrial organic solvents, petrochemicals, agrochemicals and pharmaceuticals (e.g., endocrine disruptors such as antiobiotics and hormones) - and is particularly effective for treating concentrated industrial effluents, under technically convenient conditions. The reaction products consist essentially of benign materials.

+
  • Prof. Brian Berkowitz
1263
"Spin-optics", a new method for controlling electric current by manipulating electron spin-orbit interaction, can be used in semiconductors to achieve a wider spectrum of functionality similar to that achieved with polarized light. This method may be used for ultra-fast spin-based transistors.

"Spin-optics", a new method for controlling electric current by manipulating electron spin-orbit interaction, can be used in semiconductors to achieve a wider spectrum of functionality similar to that achieved with polarized light. This method may be used for ultra-fast spin-based transistors.

Applications


  • Ultra-fast spin-based field effect transistor (spin-FET) for communications, computing, and defense applications.
  • Nano- and micro-electronic semiconductor devices for polarizing, filtering, switching, guiding, storing, spin detecting and focusing the current carriers.
  • Devices for signal splitting and wide-angle sparging of electrons.

  • Advantages


    • Use of Nou-magnetic semiconductor materials
    • Creation of spin polarize current

    Technology's Essence


    Researchers at the Weizmann Institute of Science have discovered a novel method for controlling and manipulating the propagation of electrons in semiconductors with spin-orbit interaction by acting on the spin polarization of the electrons. It was found that when the spin-orbit coupling strength in the semiconductor is locally varying, electrons of different spin polarizations deflect by different angles at the region of the spin-orbit inhomogeneity. The spin-orbit coupling can be tuned locally and dynamically by applying bias voltage with gates. With suitable angle of incidence of electrons, one spin polarization either can pass through the region of inhomogeneity or totally reflected, in analogy to the total internal reflection phenomenon in optics. In fact, this new approach to spintronics is similar to manipulating polarized light in optical technologies. With this approach (termed "spin-optics") it is possible to manipulate the current carriers in semiconductors (electrons or holes) to achieve the whole spectrum of functionality used in optics of the polarized light, e.g., spin polarizing, spin filtering, switching, guiding as well as spin-based field effect transistor (spin-FET).

    +
    • Prof. Alexander Finkelstein
    1021
    A method for mapping and correcting optical distortion conferred by live cell specimens in microscopy that cannot be overcome using optical techniques alone can be used both for light microscopy and confocal microscopy. The system determines the 3D refractive index for the samples, and provides a...

    A method for mapping and correcting optical distortion conferred by live cell specimens in microscopy that cannot be overcome using optical techniques alone can be used both for light microscopy and confocal microscopy. The system determines the 3D refractive index for the samples, and provides a method for ray tracing, calculation of 3D space variant point spread, and generalized deconvolution.

    Applications


    Microscopy: The method was developed and applied for light microscopy, and is of critical importance for detection of weak fluorescently labeled molecules (like GFP fusion proteins) in live cells. It may be applicable also to confocal microscopy and other imaging methods like ultrasound, deep ocean sonar imaging, radioactive imaging, non-invasive deep tissue optical probing and photodynamic therapy. Gradient glasses: The determination of the three-dimensional refractive index of samples allows testing and optimization of techniques for production of gradient glasses. Recently continuous refractive index gradient glasses (GRIN, GRADIUM) were introduced, with applications in high quality optics, microlenses, aspherical lenses, plastic molded optics etc. Lenses built from such glasses can be aberration-corrected at a level, which required doublets and triplets using conventional glasses. Optimized performance of such optics requires ray tracing along curved path, as opposed to straight segments between surface borders of homogeneous glass lenses. Curved ray tracing is computation-intensive and dramatically slows down optimization of optical properties. Our algorithm for ray tracing in gradient refractive index eliminates this computational burden.

    Technology's Essence


    A computerized package to process three-dimensional images from live biological cells and tissues was developed in order to computationally correct specimen induced distortions that cannot be achieved by optical technique. The package includes: 1. Three-dimensional (3D) mapping of the refractive index of the specimen. 2. Fast method for ray tracing through gradient refractive index medium. 3. Three-dimensional space variant point spread function calculation. 4. Generalized three-dimensional deconvolution.

    +
    • Prof. Zvi Kam
    1506
    A simple electrochemical method and apparatus for the continues production of CO (carbon monoxide) from CO2 as chemical storage for electrical energy and a basic material for further organic products. Constant progress is made in solar and wind alternative energy production. Unfortunately, these...

    A simple electrochemical method and apparatus for the continues production of CO (carbon monoxide) from CO2 as chemical storage for electrical energy and a basic material for further organic products.

    Constant progress is made in solar and wind alternative energy production. Unfortunately, these systems are weather and time-dependent. Additionally, most of the geographic areas best suited for harvesting these resources are remote from population centers. Therefore the need for a reliable method to store and transport renewable energy is clear.

    CO can be easily converted into methanol, which is one of the major chemical raw materials and can by itself be used as fuel for diesel engines and the energy source for direct methanol fuel cells (DMFC).

    At present no reliable method of CO2 to CO reduction is available. Either using low temperatures which leads to low thermodynamic efficiency (<60%), Requires precious metals for electrodes and results in toxic byproducts, or using high temperatures which Requires pure CO2 input and Produces a mixture of CO2 and CO.

    The current technology describes an efficient, flexible, continues method for production of CO at high temperatures (900oC) without any byproducts or toxic materials.

    Applications


    • Production of CO from CO2
    • Easy conversion into methanol

    Advantages


    ·         No precious (Pt, Ag, Au, Pd) metals required

    ·         No hazardous chemicals involved, no pollution

    ·         Continuous operation is possible

    ·         One can use flue gas as a source

    ·         Capture of CO2 from air is possible

    ·         The system is very compact>20 kW/m3

    ·         Operation conditions are very flexible

    ·         The process fits existing infrastructure

    ·         CO can be easily converted into liquid fuel (CH3OH)


    Technology's Essence


    The outlined technology overcomes the basic problems of CO production by using molten Li2CO3 as the electrolyte, a Ti container (will not undergo corrosion), Ti cathode (does not catalyze decomposition of CO), and a graphite anode (no chemical reaction with Li2CO3). At 900°C and current density of 0.05-2 A/cm2, this unique system enables a thermodynamic efficiency close to 100%, continues production of CO – efficiently separating CO2 to CO and O2.

    +
    • Prof. Igor Lubomirsky
    1441
    New protein as a target to treat B cell-related cancer.Chronic lymphocytic leukemia (CLL), a malignant disease characterized by the accumulation of B lymphocytes in the blood, lymphoid organs, and bone marrow, is the second most common type of leukemia in adults, accounting for about 7,000 new cases of...

    New protein as a target to treat B cell-related cancer.
    Chronic lymphocytic leukemia (CLL), a malignant disease characterized by the accumulation of B lymphocytes in the blood, lymphoid organs, and bone marrow, is the second most common type of leukemia in adults, accounting for about 7,000 new cases of leukemia each year. Presently, there is no cure for CLL, and the overall goal of leukemia treatment is to bring about a remission. Therefore, identifying new proteins that may serve as a target for inducing cell death in the malignant cells is highly desirable. The present technology identifies a new regulator protein that is essential for the survival of CLL cells.

    Applications


    • Treatment of CLL, as well as other B cell-related cancers (e.g. gastric cancer and renal cell carcinoma), by blocking CD84 activity
    • Diagnosis of CLL

    Advantages


    • Very specific to malignant B cells
    • Diagnosis, and therefore treatment, can be made at early stages of the disease

     


    Technology's Essence


    B cells taken from CLL patients have a high level of the protein CD84. Stimulation of CD84 upregulates the survival of B-CLL. However, inhibition of CD84 activity with a blocking antibody downregulates the expression of another protein which controls B-CLL survival, thus inducing cell death. Therefore, the present invention reveals CD84 as a regulator of B-CLL survival

    +
    • Prof. Idit Shachar
    279
    • Prof. Joel L. Sussman
    141
    Monoclonal antibodies for peptide and steroid hormones Due to their high specificity and sensitivity these antibodies may be applicable for research, diagnosis and therapeutics. A particular use may be quality control of industrial manufacturing of food products.   §  127, 274, 141 – Monoclonal...

    Monoclonal antibodies for peptide and steroid hormones

    Due to their high specificity and sensitivity these antibodies may be applicable for research, diagnosis and therapeutics. A particular use may be quality control of industrial manufacturing of food products.

     

    §  127, 274, 141 – Monoclonal antibodies to estradiol         

          Description: Monoclonal antibodies raised against oestradiol-6-     carboxymethyl oxime-BSA. Available clones: 2F9 (Rat, IgG2a), 15 (IgG2b),    8D9 (IgG2a).

    Estradiol is a sex hormone, which has not only a critical impact on reproductive and sexual functioning, but also affects other organs, including the bones. In the female, estradiol acts as a growth hormone for tissues of the reproductive organs.

                References: De Boever J, Kohen F, Usanachitt C, Vandekerckhove D, Leyseele D, Vandewalle L. 1986. Direct chemiluminescence immunoassay for estradiol in serum. Clin Chem. 32(10):1895-900.

                S?mjen D1, Amir-Zaltsman Y, Mor G, Gayer B, Lichter S, Nevo N, Kohen F. 1998. A monoclonal antibody to oestradiol potentiates the stimulation of the specific activity of the brain type creatine kinase by oestrogen in vivo and in vitro. J Steroid Biochem Mol Biol. 64(5-6):297-304.

    +
    • Dr. Fortune Kohen
    236
    236-237 - Diastereomer Lytic Peptides for Treatment of Solid Tumors and Metastasis Description: 15-mer (Leu-Lys-Dleu- Leu-Lys-Dlys-Leu-Dleu-Dlys-Lys-Leu-Leu-Dlys-Leu-Leu) and 15-mer Histidin (H-Leu-Lys-D-Leu- Leu-His-D-Lys-Leu-D-Leu-D-Lys-His-Leu-Leu-D-Lys-Leu-Leu-NH2) are membrane-active peptides...

    236-237 - Diastereomer Lytic Peptides for Treatment of Solid Tumors and Metastasis

    Description: 15-mer (Leu-Lys-Dleu- Leu-Lys-Dlys-Leu-Dleu-Dlys-Lys-Leu-Leu-Dlys-Leu-Leu) and 15-mer Histidin (H-Leu-Lys-D-Leu- Leu-His-D-Lys-Leu-D-Leu-D-Lys-His-Leu-Leu-D-Lys-Leu-Leu-NH2) are membrane-active peptides composed of both D- and L amino acids (diastereomers). These peptides have demonstrated potent anti-cancer and anti metastatic activities in several animal models including models for prostate and lung cancer. They were shown to successfully inhibit tumor growth when injected intratumorally or intraveneously. The 15-mer Histidine form shows reduced systemic toxicity.

    References: Papo N, Braunstein A, Eshhar Z, Shai Y. 2004. Suppression of human prostate tumor growth in mice by a cytolytic D-, L-amino Acid Peptide: membrane lysis, increased necrosis, and inhibition of prostate-specific antigen secretion. Cancer Res. 64(16):5779-86.

    Makovitzki A1, Fink A, Shai Y. 2009. Suppression of human solid tumor growth in mice by intratumor and systemic inoculation of histidine-rich and pH-dependent host defense-like lytic peptides. Cancer Res. 69(8):3458-63.

    +
    • Prof. Yechiel Shai

    Pages