You are here

Category
Technology Name
Briefcase
Scientist
1507
One-step synthesis of primary amines from alcohols and ammonia under mild conditions.Amines are widely used in the production of numerous products for multiple industries and their use is expected to increase. Global amines market is expected to reach over $14 billion by 2020, with an average annual...

One-step synthesis of primary amines from alcohols and ammonia under mild conditions.
Amines are widely used in the production of numerous products for multiple industries and their use is expected to increase. Global amines market is expected to reach over $14 billion by 2020, with an average annual growth of 3.5%.
Primary amines are most useful in the larger markets of ethanolamines and fatty amines.
Current synthetic methods require harsh reaction conditions, are non-specific and generate toxic waste. The outlined technology utilizes a novel catalyst to synthesize primary amines in a simple single-step fashion directly from alcohols and ammonia.

Applications


• Production of primary amines for numerous industries (agrochemicals, surfactants, personal care, water treatment, fine chemicals, plastics, dyes, pigments, food additives and pharmaceuticals)

Advantages


  • Mild reaction conditions
  • Single step synthesis
  • High yields
  • No solvent required
  • No toxic reagents or by-products
  • Ecologically and economically beneficial

Technology's Essence


Amines are a very important family of compounds used in multiple industries. The presented technology uses selective catalytic synthesis of primary amines from primary alcohols and ammonia. This simple, one-step, easily applicable reaction delivers primary amines in good yields, in addition to valuable environmental and economic advantages.

+
  • Prof. David Milstein
1151
A method to significantly shorten acquisition times of high-quality MRI images. Multidimensional nuclear magnetic resonance (NMR) is used nowadays in many applications (e.g., discovery of new pharmaceutical drugs, characterization of new catalysts, and investigation of the structure and dynamics of...

A method to significantly shorten acquisition times of high-quality MRI images.

Multidimensional nuclear magnetic resonance (NMR) is used nowadays in many applications (e.g., discovery of new pharmaceutical drugs, characterization of new catalysts, and investigation of the structure and dynamics of proteins). One drawback of this technique is that, by contrast to one-dimensional spectroscpic methods, multidimensional NMR requires relatively long measurement times associated with hundreds or thousands of scans. This places certain kinds of rapidly-changing systems in Chemistry outside the scope of the technique. Long acquisition times also make this technique ill-suited for in vivo analyses and for clinical measurements in combination with magnetic resonance imaging (MRI). The current technology allows for the acquisition of multidimentional NMR scans using a single continuous scan, thereby shortening the time needed to acquire high-quality MRI images.

Applications


  • In vivo diagnostics

  • High-throughput proteomics/metabonomics

  • NMR of unstable chemical systems

  • Metabolic dynamics

  • High-resolution NMR in tabletop systems

  • Extensions to non-MR spectroscopies


Advantages


  • Can shorten the acquisition time of any multidimensional spectroscopy experiment by orders of magnitude
  • Compatible with the majority of multidimensional pulse sequences
  • Can be implemented using conventional NMR and MRI hardware

Technology's Essence


The outlined approach, called ultrafast multidimensional NMR, significantly expedites the analysis of the electromagnetic sounds produced, making it possible to acquire complete multidimensional NMR spectra within a fraction of a second. This technology “slices up” the molecular sample into numerous thin layers and then simultaneously performs all the measurements required on every one of these slices. The protocol then integrates these measurements according to their precise location, generating an image that amounts to a full multidimensional spectrum from the entire sample.

+
  • Prof. Lucio Frydman
1461
Bidirectional Similarity offers a new approach to summarization of visual data (images and video) based on optimization of well defined similarity measure. Common visual summarization methods (mainly scaling and cropping) suffer from significant deficiencies related to image quality and loss of...

Bidirectional Similarity offers a new approach to summarization of visual data (images and video) based on optimization of well defined similarity measure.

Common visual summarization methods (mainly scaling and cropping) suffer from significant deficiencies related to image quality and loss of important data. Many attempts have been made to overcome these problems, however, success was very limited and neither has become commercially applicable.

Using an optimization problem approach and state-of-the-art algorithms, our method provides superior summarization of visual data as well as a measure to determine similarity, which together provides a basis for a wide range of applications in image and video processing.

Applications


The technology can be utilized in any application where an image size is changed or were similarity of images is important. Sample applications include:

  • Image processing software (as an added-on feature)

  • Resizing software

  • Creation of Thumbnails

  • Adjustment of images to different screen sizes (TV-cellular etc.)

  • Optimization of space-time patches in video processing

  • Image montages

  • Automatic image & video cropping

  • Images synthesis, photo reshuffling and many more


Advantages


While Bidirectional Similarity summarization will not replace existing technologies in all applications, it enjoys significant advantages that will offer better results in many of them. Among its advantages, the Bidirectional Similarity summarization:

  • Provides better resolution and in many cases reduces distortion compared to scaling
  • Reduces (or avoids) loss of important data compared to cropping
  • Allows importance-based summarization even when important information is widespread and hard to define
  • Uses quantitative objective similarity measure
  • Offers a generic tool for different image processing applications (synthesis, montage, reshuffling etc.)

Technology's Essence


Bidirectional Similarity Summarization is a patent-pending image and video processing method, which maximizes “completeness” and “coherence” between images and videos, using a measure for quantifying how “good” a visual summary is.

The algorithm uses and iterative process, gradually reducing the image size, while keeping all source patches in the target image, without introducing visual artifacts that are not in the input data. Using a Similarity Index, the algorithm identifies redundant information and compromise the “less important” data while generating the required target image or video.

The Similarity Index, which stands in the heart of the Bidirectional Similarity summarization algorithm, can be utilized by its own, as an objective function within other optimization processes, as well as in comparing the quality of visual summaries generated by different methods

+
  • Prof. Michal Irani
1270
Monoclonal antibodies to IgE Description: Rat monoclonal anti-IgE antibodies that was generated by fusion of plasmacytoma (84.1C) or myeloma (EM953) cells with splenocytes of rat immunized with purified murine IgE mAb. The antibodies react with various IgE mAb of different specificities and not with...

Monoclonal antibodies to IgE

Description: Rat monoclonal anti-IgE antibodies that was generated by fusion of plasmacytoma (84.1C) or myeloma (EM953) cells with splenocytes of rat immunized with purified murine IgE mAb. The antibodies react with various IgE mAb of different specificities and not with immunoglobulins of other classes, and recognize an epitope on the murine Fc epsilon region.

Were shown to block IgE-Fc?R interactions and inhibit passive cutaneous anaphylaxis. 

Clone 84.1c recognizes a site on IgE, which is identical or very close to the Fc?R binding site. May be used for detection and manipulation of the IgE response in mice.

Reference:  Schwarzbaum S, Nissim A, Alkalay I, Ghozi MC, Schindler DG, Bergman Y, Eshhar Z. 1989. Mapping of murine IgE epitopes involved in IgE-Fc epsilon receptor interactions. Eur J Immunol 19(6):1015-23.

 

M182, M185, M186

+
  • Prof. Zelig Eshhar
1518
Improved immunotherapy for breast cancer. Monoclonal antibodies (mAbs) to ErbB-2/HER2 growth factor receptor, or to its sibling, the epidermal growth factor receptor (EGFR), prolong survival of cancer patients, especially when combined with cytotoxic therapies. However, low effectiveness of...

Improved immunotherapy for breast cancer.

Monoclonal antibodies (mAbs) to ErbB-2/HER2 growth factor receptor, or to its sibling, the epidermal growth factor receptor (EGFR), prolong survival of cancer patients, especially when combined with cytotoxic therapies. However, low effectiveness of therapeutic mAbs and the evolution of patient resistance call for improvements. Furthermore, the response to the clinically approved monotherapy of Herceptin (a humanized mAb directed against ErbB-2), is relatively low (~15%) and short lived (median duration, 9 months). Therefore, there is a need to improve the therapeutic treatment against this receptor. The present technology enhances the therapeutic activity of anti-ErB-2 receptor antibodies, by combining two or more epitope-distinct antibodies.

Applications


  • Improved treatment of ErbB-2-overexpressing tumors (e.g. in breast and ovary cancers).


Advantages


  • May enhance patient response and delay acquisition of resistance.
  • Enhancement of therapeutic efficacy and synergy with chemotherapy.

Technology's Essence


Optimal selection of mAbs for cancer immunotherapy may improve its therapeutic potential. The outlined technology addresses an emerging strategy, which enhances the therapeutic activity of anti-receptor antibodies by combining two mAbs engaging distinct epitopes. It was demonstrated that pairs of anti-ErbB-2 mAbs better inhibit ErbB-2-overexpressing tumors than the respective individual mAbs, both in vitro and in vivo.

+
  • Prof. Yosef Yarden
1184
Trace chemical or biological elements can be accurately detected and monitored in the field or at the point of care through use of this new quick, cost-effective platform technology based on a hybrid chemical-electronic detector. Analytes can be measured according to the electrical current changes they...

Trace chemical or biological elements can be accurately detected and monitored in the field or at the point of care through use of this new quick, cost-effective platform technology based on a hybrid chemical-electronic detector. Analytes can be measured according to the electrical current changes they induce with high specificity and accuracy at parts-per-billion (ppb) levels.

Applications


Transducer which may be developed to suite: Medical diagnostics: point of care, real time diagnostics of chemical and biological substances. Environmental watch: monitoring air or water pollution, testing for food poisoning. Chemical warfare: detection of chemical agents and explosives. Industry: monitoring industrial processes at real time.

Technology's Essence


Researchers at the Weizmann Institute have developed a platform technology based on novel hybrid chemical-electronic detector MOCSER (MOlecular Controlled SEmiconductor Resistor). The technology is based on a new type of a Gallium Arsenide (GaAs) electronic device covered with a monolayer of sensing molecules. The detection is achieved by measuring the current changes created due to analyte binding. The researchers have succeeded in showing high sensitivity and accuracy of the device down to parts per billion (ppb) levels. They have also demonstrated the possibility for broad applications of this detector by tailoring different sensing molecules on it and measuring various substances.

+
  • Prof. Ron Naaman
  • Prof. David Cahen
1392
A catalytic based reaction for the treatment of industrial waste water. Millions of tons of organic chemical compounds - including solvents, petrochemicals, agrochemicals, and pharmaceuticals - are produced every year by a wide variety of chemical industries. Two immediate problems arise: 1. Industrial...

A catalytic based reaction for the treatment of industrial waste water. Millions of tons of organic chemical compounds - including solvents, petrochemicals, agrochemicals, and pharmaceuticals - are produced every year by a wide variety of chemical industries. Two immediate problems arise: 1. Industrial production of these chemicals and/or other products leads to effluent streams - highly toxic, contaminated aqueous solutions - from factories. These effluents must be treated prior to release of the water back into the environment. 2. Following use, these chemicals (e.g., agrochemicals, pharmaceuticals) become serious pollutants as they eventually find their way into the soil, sediment, and surface and/or groundwater environments. Current treatment methods are severely limited. Treatment of effluent streams by, e.g., filtration, photocatalysis, or bioreactors is often highly ineffective - the waste compounds not being easily captured, degraded or transformed - and/or prohibitively expensive.

Applications


  • Detoxification of industrial effluents, especially from petrochemical, agrochemical and pharmaceutical industries 
  • Waste water decontamination 
  • In situ and ex situ remediation of water polluted by organic and other contaminants

Advantages


  • Cost efficient
  • Quick

Technology's Essence


Researchers at the Weizmann Institute of Science have developed a new process for degradation and/or treatment of practically any organic contaminant in aqueous solutions under oxidizing (aerobic) conditions. A suite of catalytic materials has been developed which allows both in situ and ex situ remediation of polluted water by oxidative chemical degradation of contaminants. The technology eliminates or reduces a broad range of water pollutants - industrial organic solvents, petrochemicals, agrochemicals and pharmaceuticals (e.g., endocrine disruptors such as antiobiotics and hormones) - and is particularly effective for treating concentrated industrial effluents, under technically convenient conditions. The reaction products consist essentially of benign materials.

+
  • Prof. Brian Berkowitz
1481
In recent years, there has been a growing interest in the development of nanoscale magnetic and thermal characterization tools in order to address rapidly evolving fields, such as nanomagnetism, spintronics and energy-efficient computing. The requirements from these tools include high sensitivity and...

In recent years, there has been a growing interest in the development of nanoscale magnetic and thermal characterization tools in order to address rapidly evolving fields, such as nanomagnetism, spintronics and energy-efficient computing. The requirements from these tools include high sensitivity and high spatial resolution to enable local detection and accurate measurements of extremely low signals. For example, the energy dissipation mechanism in quantum systems is related to preservation of quantum information, which is of particular importance in the field of quantum computing. Available local magnetic imaging methods suffer from low sensitivity and in some cases, low spatial resolution. On the other hand, energy dissipation is not a readily measurable quantity on the nanometer scale and existing thermal imaging methods are not sensitive enough for studying quantum systems and are unsuitable for low temperature operation.

A novel sensor device comprising a nanoscale superconducting quantum interference device (SQUID) was developed by Prof. Zeldov at the Weizmann Institute of Science. The fabrication method enables the miniaturization of the sensor to an effective diameter of below 50 nm and its integration onto the apex of a very sharp tip that is ideally suited for scanning probe microscopy. The extremely small size of the SQUID-on-tip sensor and the ability to approach very close to the sample surface result in nano-metric spatial resolution and a very sensitivity.

Applications


·         Scanning probe microscopy for magnetic and thermal characterization

·         Inspection and probing equipment for quantum computing


Advantages


  • Simple fabrication process

  • High field sensitivity and bandwidth

  • Nanoscale sensors (down to 46 nm in diameter)

  • Tip-sample distance can be as close as a few nanometers


Technology's Essence


A SQUID is a very sensitive magnetometer used to measure extremely subtle magnetic fields, based on superconducting loops. The present invention is a novel sensor device, based on a nanoscale two-junction or multi-junction SQUIDs fabricated on the edge of a sharp tip in a three dimensional geometric configuration. In such a setup, the SQUID can approach the sample to a distance of few nanometers, as opposed to the conventional planar SQUIDs, which results in an extremely high sensitivity.

+
  • Prof. Eli Zeldov
1529
We present an efficient and robust broadband crystal optical conversion device. Various applications of laser optics require tunable laser sources. Currently, most frequency conversion devices rely on a single non-linear crystal, which is either temperature or angle tuned to enhance efficiency. This...

We present an efficient and robust broadband crystal optical conversion device. Various applications of laser optics require tunable laser sources. Currently, most frequency conversion devices rely on a single non-linear crystal, which is either temperature or angle tuned to enhance efficiency. This results only in a narrow efficient spectral band of conversion. Other techniques such as periodic quasi-phase matching result in improved efficiencies but still within a narrow predetermined band. Random quasi-phase matching results in improved bandwidth but in a significant reduction in efficiency. This new device enables ultra-broadband wavelength conversion while maintaining high efficiency.

Applications


  • Laser optics industry
  • Frequency convertor for broadband signals
  • Generation of ultrafast visible radiation
  • Pulse selection.

Advantages


  • 90% efficiency of conversion process.
  • Simple and compact
  • Insensitive to the deviations in alignment, no dependence of the angle incidence beam or of temperature
  • Frequency converter of both broadband signals and ultra-short pulses.

Technology's Essence


This device is based on a new method of adiabatic wavelength conversion. The device works whereby a strong narrow-band pump is introduced into the crystal along with a weaker pulse to be converted. This conversion is realized in a quasi-phase matched nonlinear crystal, where the period is tuned adiabatically from strong negative phase-mismatch to strong positive phase-mismatch (or vice versa). This results in the efficient transformation of the weaker pulse.

+
  • Prof. Yaron Silberberg
1250
A robust method of identifying moving or changing objects in a video sequence groups each pixel with other adjacent pixels according to either motion or intensity values. Pixels are then repeatedly regrouped into clusters in a hierarchical manner. As these clusters are regrouped, the motion pattern is...

A robust method of identifying moving or changing objects in a video sequence groups each pixel with other adjacent pixels according to either motion or intensity values. Pixels are then repeatedly regrouped into clusters in a hierarchical manner. As these clusters are regrouped, the motion pattern is refined, until the full pattern is reached.

Applications


These methods for motion-based segmentation may be used in a multitude of applications that need to correctly identify meaningful regions in image sequences and compute their motion. Such applications include:

  1. Surveillance and homeland security - detecting changes, activities, objects.
  2. Medical Imaging - imaging of dynamic tissues.
  3. Quality control in manufacturing, and more.

Technology's Essence


Researchers at the Weizmann Institute of Science have developed a multiscale, motion-based segmentation method which, unlike previous methods, uses the inherent multiple scales of information in images. The method begins by measuring local optical flow at every picture elements (pixels). Then, using algebraic multigrid (AMG) techniques, it assembles together adjacent pixels which are similar in either their motion or intensity values into small aggregates - each pixel being allowed to belong to different aggregates with different weights. These aggregates in turn are assembled into larger aggregates, then still larger, etc., yielding eventually full segments.

As the aggregation process proceeds, the estimation of the motion of each aggregate is refined and ambiguities are resolved. In addition, an adaptive motion model is used to describe the motion of an aggregate, depending on the amount of flow information that is available within each aggregate. In particular, a translation model is used to describe the motion of pixels and small aggregates, switch to an affine model to describe the motion of intermediate sized aggregates, and finally turn to a perspective model to describe aggregates at the coarsest levels of scale. In addition to this, methods for identifying correspondences between aggregates in different images are also being developed. These methods are suitable for image sequences separated by fairly large motion.

+
  • Prof. Ronen Ezra Basri
1021
A method for mapping and correcting optical distortion conferred by live cell specimens in microscopy that cannot be overcome using optical techniques alone can be used both for light microscopy and confocal microscopy. The system determines the 3D refractive index for the samples, and provides a...

A method for mapping and correcting optical distortion conferred by live cell specimens in microscopy that cannot be overcome using optical techniques alone can be used both for light microscopy and confocal microscopy. The system determines the 3D refractive index for the samples, and provides a method for ray tracing, calculation of 3D space variant point spread, and generalized deconvolution.

Applications


Microscopy: The method was developed and applied for light microscopy, and is of critical importance for detection of weak fluorescently labeled molecules (like GFP fusion proteins) in live cells. It may be applicable also to confocal microscopy and other imaging methods like ultrasound, deep ocean sonar imaging, radioactive imaging, non-invasive deep tissue optical probing and photodynamic therapy. Gradient glasses: The determination of the three-dimensional refractive index of samples allows testing and optimization of techniques for production of gradient glasses. Recently continuous refractive index gradient glasses (GRIN, GRADIUM) were introduced, with applications in high quality optics, microlenses, aspherical lenses, plastic molded optics etc. Lenses built from such glasses can be aberration-corrected at a level, which required doublets and triplets using conventional glasses. Optimized performance of such optics requires ray tracing along curved path, as opposed to straight segments between surface borders of homogeneous glass lenses. Curved ray tracing is computation-intensive and dramatically slows down optimization of optical properties. Our algorithm for ray tracing in gradient refractive index eliminates this computational burden.

Technology's Essence


A computerized package to process three-dimensional images from live biological cells and tissues was developed in order to computationally correct specimen induced distortions that cannot be achieved by optical technique. The package includes: 1. Three-dimensional (3D) mapping of the refractive index of the specimen. 2. Fast method for ray tracing through gradient refractive index medium. 3. Three-dimensional space variant point spread function calculation. 4. Generalized three-dimensional deconvolution.

+
  • Prof. Zvi Kam
1441
New protein as a target to treat B cell-related cancer.Chronic lymphocytic leukemia (CLL), a malignant disease characterized by the accumulation of B lymphocytes in the blood, lymphoid organs, and bone marrow, is the second most common type of leukemia in adults, accounting for about 7,000 new cases of...

New protein as a target to treat B cell-related cancer.
Chronic lymphocytic leukemia (CLL), a malignant disease characterized by the accumulation of B lymphocytes in the blood, lymphoid organs, and bone marrow, is the second most common type of leukemia in adults, accounting for about 7,000 new cases of leukemia each year. Presently, there is no cure for CLL, and the overall goal of leukemia treatment is to bring about a remission. Therefore, identifying new proteins that may serve as a target for inducing cell death in the malignant cells is highly desirable. The present technology identifies a new regulator protein that is essential for the survival of CLL cells.

Applications


• Treatment of CLL, as well as other B cell-related cancers (e.g. gastric cancer and renal cell carcinoma), by blocking CD84 activity
• Diagnosis of CLL

Advantages


• Very specific to malignant B cells
• Diagnosis, and therefore treatment, can be made at early stages of the disease

 


Technology's Essence


B cells taken from CLL patients have a high level of the protein CD84. Stimulation of CD84 upregulates the survival of B-CLL. However, inhibition of CD84 activity with a blocking antibody downregulates the expression of another protein which controls B-CLL survival, thus inducing cell death. Therefore, the present invention reveals CD84 as a regulator of B-CLL survival

+
  • Prof. Idit Shachar
1499
Bladder cancer is a common malignancy; it is the 4th most common cancer in males and the 9th in females.  The presenting symptom is usually blood in the urine, and diagnosis is currently based on cystoscopy, which is invasive, costly, painful and time consuming.  To date, no biomarker has been...

Bladder cancer is a common malignancy; it is the 4th most common cancer in males and the 9th in females.  The presenting symptom is usually blood in the urine, and diagnosis is currently based on cystoscopy, which is invasive, costly, painful and time consuming.  To date, no biomarker has been identified in the urine that might be used for screening, staging, prognosis and monitoring treatment.  We now report that the amount of the 60 kDa heat shock protein (HSP60) in a subject’s urine is a biomarker for muscle invasion in patients with bladder cancer – stage T2 and higher.  Moreover, subjects with stage T1 disease can be stratified by their urine levels of HSP60 into a sub-group likely to progress into stage T2 or into a sub-group more likely to respond to conservative treatment with BCG, which does not require removal of the bladder.  The distinction between these two sub-groups of T1 bladder cancer can identify earlier subjects in need of cystectomy, while sparing others unnecessary major surgery.

Applications


  • Screening subjects with overt hematuria, or at risk of developing bladder cancer (such as heavy smokers)
  • tratifying bladder cancer subjects
  • Prognosis
  • Determining treatment program
  • Monitoring response to therapy.

Advantages


  • Non-invasive
  • Easy to apply
  • Relatively inexpensive
  • Prognositic.

Technology's Essence


Quantitative measurement of HSP60 levels in a subject’s urine by ELISA, radio-immunoassay or other simple assays.

+
  • Prof. Irun R. Cohen
1265
A Novel water treatment method capable of handling a wide spectrum of pollutants, both organic and metallic was developed by the group of Prof. Berkowitz and proven in large scale. The combination of ever-growing contamination from various sources (industry, agriculture and domestic uses), the toxicity...

A Novel water treatment method capable of handling a wide spectrum of pollutants, both organic and metallic was developed by the group of Prof. Berkowitz and proven in large scale.

The combination of ever-growing contamination from various sources (industry, agriculture and domestic uses), the toxicity of contaminating compounds, and their extreme persistence in the environment, define a complex challenge and serious threat. Feasible technological responses to deal with growing deterioration in water resource quality are difficult to develop, largely because of the wide variety of contaminants having different properties, the stringent environmental standards that must be met, and the inherent heterogeneity of natural aquatic systems. The quest for cost-effective, environmentally-acceptable methods that can target a wide spectrum of contaminants, in situ and ex situ, is urgent and critical today more than ever.

The approach of the technology presented here is to reduce their oxidation state, i.e., to transform them electrochemically. In most cases, complete transformation of contaminants from the oxidized-organic group produces environmentally innocuous compounds, while reduction of heavy metals renders them insoluble and immobile, and therefore much less harmful. These treatment methods can be applied both in situ and ex situ for decontamination of soils, sediments, water, wastewater and gaseous process streams.

Applications


•           Polluted water and wastewater treatment.

•           Soil decontamination.

•           Gaseous process stream treatment.


Advantages


•           Environmentally friendly output.

•           Cost effective.

•           Can be applied in situ as well as ex situ.


Technology's Essence


The treatment method presented here is based on nanosized zerovalent iron (nZVI) particles and cyanocobalamine (vitamin B12) on a diatomite matrix.  Cyanocobalamine is known to be an effective electron mediator, having strong synergistic effects with nZVI for reductive dehalogenation reactions. This composite material also improves the reducing capacity of nZVI by preventing agglomeration of iron nanoparticles, thus increasing their active surface area. The porous structure of the diatomite matrix allows

high hydraulic conductivity, which favors channeling of contaminated water to the reactive surface of the composite material resulting in faster rates of remediation. The composite material rapidly degrades or transforms completely a large spectrum of water contaminants, including halogenated solvents like TCE, PCE, and cis-DCE, pesticides like alachlor, atrazine and bromacyl, and common ions like nitrate, within minutes to hours.

 

+
  • Prof. Brian Berkowitz
118
  Monoclonal antibodies for Isoflavones, leukotrienes, biotin and human and veterinary drugs May be used for monitoring drug additives in food providing animals for veterinary use and for the food industry. Leukotrienes:   Drugs: §  118 - Monoclonal antibody to Buserelin      Description: Rat...

 

Monoclonal antibodies for Isoflavones, leukotrienes, biotin and human and veterinary drugs

May be used for monitoring drug additives in food providing animals for veterinary use and for the food industry.

Leukotrienes:

 

Drugs:

§  118 - Monoclonal antibody to Buserelin

     Description: Rat monoclonal antibodies raised against Buserelin.

     Available clone: 8B4, IgG1.

 
+
  • Dr. Fortune Kohen

Pages