You are here

Category
Technology Name
Briefcase
Scientist
1506
A simple electrochemical method and apparatus for the continues production of CO (carbon monoxide) from CO2 as chemical storage for electrical energy and a basic material for further organic products. Constant progress is made in solar and wind alternative energy production. Unfortunately, these...

A simple electrochemical method and apparatus for the continues production of CO (carbon monoxide) from CO2 as chemical storage for electrical energy and a basic material for further organic products.

Constant progress is made in solar and wind alternative energy production. Unfortunately, these systems are weather and time-dependent. Additionally, most of the geographic areas best suited for harvesting these resources are remote from population centers. Therefore the need for a reliable method to store and transport renewable energy is clear.

CO can be easily converted into methanol, which is one of the major chemical raw materials and can by itself be used as fuel for diesel engines and the energy source for direct methanol fuel cells (DMFC).

At present no reliable method of CO2 to CO reduction is available. Either using low temperatures which leads to low thermodynamic efficiency (<60%), Requires precious metals for electrodes and results in toxic byproducts, or using high temperatures which Requires pure CO2 input and Produces a mixture of CO2 and CO.

The current technology describes an efficient, flexible, continues method for production of CO at high temperatures (900oC) without any byproducts or toxic materials.

Applications


  • Production of CO from CO2
  • Easy conversion into methanol

Advantages


·         No precious (Pt, Ag, Au, Pd) metals required

·         No hazardous chemicals involved, no pollution

·         Continuous operation is possible

·         One can use flue gas as a source

·         Capture of CO2 from air is possible

·         The system is very compact>20 kW/m3

·         Operation conditions are very flexible

·         The process fits existing infrastructure

·         CO can be easily converted into liquid fuel (CH3OH)


Technology's Essence


The outlined technology overcomes the basic problems of CO production by using molten Li2CO3 as the electrolyte, a Ti container (will not undergo corrosion), Ti cathode (does not catalyze decomposition of CO), and a graphite anode (no chemical reaction with Li2CO3). At 900°C and current density of 0.05-2 A/cm2, this unique system enables a thermodynamic efficiency close to 100%, continues production of CO – efficiently separating CO2 to CO and O2.

+
  • Prof. Igor Lubomirsky
1392
A catalytic based reaction for the treatment of industrial waste water. Millions of tons of organic chemical compounds - including solvents, petrochemicals, agrochemicals, and pharmaceuticals - are produced every year by a wide variety of chemical industries. Two immediate problems arise: 1. Industrial...

A catalytic based reaction for the treatment of industrial waste water. Millions of tons of organic chemical compounds - including solvents, petrochemicals, agrochemicals, and pharmaceuticals - are produced every year by a wide variety of chemical industries. Two immediate problems arise: 1. Industrial production of these chemicals and/or other products leads to effluent streams - highly toxic, contaminated aqueous solutions - from factories. These effluents must be treated prior to release of the water back into the environment. 2. Following use, these chemicals (e.g., agrochemicals, pharmaceuticals) become serious pollutants as they eventually find their way into the soil, sediment, and surface and/or groundwater environments. Current treatment methods are severely limited. Treatment of effluent streams by, e.g., filtration, photocatalysis, or bioreactors is often highly ineffective - the waste compounds not being easily captured, degraded or transformed - and/or prohibitively expensive.

Applications


  • Detoxification of industrial effluents, especially from petrochemical, agrochemical and pharmaceutical industries 
  • Waste water decontamination 
  • In situ and ex situ remediation of water polluted by organic and other contaminants

Advantages


  • Cost efficient
  • Quick

Technology's Essence


Researchers at the Weizmann Institute of Science have developed a new process for degradation and/or treatment of practically any organic contaminant in aqueous solutions under oxidizing (aerobic) conditions. A suite of catalytic materials has been developed which allows both in situ and ex situ remediation of polluted water by oxidative chemical degradation of contaminants. The technology eliminates or reduces a broad range of water pollutants - industrial organic solvents, petrochemicals, agrochemicals and pharmaceuticals (e.g., endocrine disruptors such as antiobiotics and hormones) - and is particularly effective for treating concentrated industrial effluents, under technically convenient conditions. The reaction products consist essentially of benign materials.

+
  • Prof. Brian Berkowitz
1263
"Spin-optics", a new method for controlling electric current by manipulating electron spin-orbit interaction, can be used in semiconductors to achieve a wider spectrum of functionality similar to that achieved with polarized light. This method may be used for ultra-fast spin-based transistors.

"Spin-optics", a new method for controlling electric current by manipulating electron spin-orbit interaction, can be used in semiconductors to achieve a wider spectrum of functionality similar to that achieved with polarized light. This method may be used for ultra-fast spin-based transistors.

Applications


  • Ultra-fast spin-based field effect transistor (spin-FET) for communications, computing, and defense applications.
  • Nano- and micro-electronic semiconductor devices for polarizing, filtering, switching, guiding, storing, spin detecting and focusing the current carriers.
  • Devices for signal splitting and wide-angle sparging of electrons.

  • Advantages


    • Use of Nou-magnetic semiconductor materials
    • Creation of spin polarize current

    Technology's Essence


    Researchers at the Weizmann Institute of Science have discovered a novel method for controlling and manipulating the propagation of electrons in semiconductors with spin-orbit interaction by acting on the spin polarization of the electrons. It was found that when the spin-orbit coupling strength in the semiconductor is locally varying, electrons of different spin polarizations deflect by different angles at the region of the spin-orbit inhomogeneity. The spin-orbit coupling can be tuned locally and dynamically by applying bias voltage with gates. With suitable angle of incidence of electrons, one spin polarization either can pass through the region of inhomogeneity or totally reflected, in analogy to the total internal reflection phenomenon in optics. In fact, this new approach to spintronics is similar to manipulating polarized light in optical technologies. With this approach (termed "spin-optics") it is possible to manipulate the current carriers in semiconductors (electrons or holes) to achieve the whole spectrum of functionality used in optics of the polarized light, e.g., spin polarizing, spin filtering, switching, guiding as well as spin-based field effect transistor (spin-FET).

    +
    • Prof. Alexander Finkelstein
    1518
    Improved immunotherapy for breast cancer. Monoclonal antibodies (mAbs) to ErbB-2/HER2 growth factor receptor, or to its sibling, the epidermal growth factor receptor (EGFR), prolong survival of cancer patients, especially when combined with cytotoxic therapies. However, low effectiveness of...

    Improved immunotherapy for breast cancer.

    Monoclonal antibodies (mAbs) to ErbB-2/HER2 growth factor receptor, or to its sibling, the epidermal growth factor receptor (EGFR), prolong survival of cancer patients, especially when combined with cytotoxic therapies. However, low effectiveness of therapeutic mAbs and the evolution of patient resistance call for improvements. Furthermore, the response to the clinically approved monotherapy of Herceptin (a humanized mAb directed against ErbB-2), is relatively low (~15%) and short lived (median duration, 9 months). Therefore, there is a need to improve the therapeutic treatment against this receptor. The present technology enhances the therapeutic activity of anti-ErB-2 receptor antibodies, by combining two or more epitope-distinct antibodies.

    Applications


    • Improved treatment of ErbB-2-overexpressing tumors (e.g. in breast and ovary cancers).


    Advantages


    • May enhance patient response and delay acquisition of resistance.
    • Enhancement of therapeutic efficacy and synergy with chemotherapy.

    Technology's Essence


    Optimal selection of mAbs for cancer immunotherapy may improve its therapeutic potential. The outlined technology addresses an emerging strategy, which enhances the therapeutic activity of anti-receptor antibodies by combining two mAbs engaging distinct epitopes. It was demonstrated that pairs of anti-ErbB-2 mAbs better inhibit ErbB-2-overexpressing tumors than the respective individual mAbs, both in vitro and in vivo.

    +
    • Prof. Yosef Yarden
    1441
    New protein as a target to treat B cell-related cancer.Chronic lymphocytic leukemia (CLL), a malignant disease characterized by the accumulation of B lymphocytes in the blood, lymphoid organs, and bone marrow, is the second most common type of leukemia in adults, accounting for about 7,000 new cases of...

    New protein as a target to treat B cell-related cancer.
    Chronic lymphocytic leukemia (CLL), a malignant disease characterized by the accumulation of B lymphocytes in the blood, lymphoid organs, and bone marrow, is the second most common type of leukemia in adults, accounting for about 7,000 new cases of leukemia each year. Presently, there is no cure for CLL, and the overall goal of leukemia treatment is to bring about a remission. Therefore, identifying new proteins that may serve as a target for inducing cell death in the malignant cells is highly desirable. The present technology identifies a new regulator protein that is essential for the survival of CLL cells.

    Applications


    • Treatment of CLL, as well as other B cell-related cancers (e.g. gastric cancer and renal cell carcinoma), by blocking CD84 activity
    • Diagnosis of CLL

    Advantages


    • Very specific to malignant B cells
    • Diagnosis, and therefore treatment, can be made at early stages of the disease

     


    Technology's Essence


    B cells taken from CLL patients have a high level of the protein CD84. Stimulation of CD84 upregulates the survival of B-CLL. However, inhibition of CD84 activity with a blocking antibody downregulates the expression of another protein which controls B-CLL survival, thus inducing cell death. Therefore, the present invention reveals CD84 as a regulator of B-CLL survival

    +
    • Prof. Idit Shachar
    1021
    A method for mapping and correcting optical distortion conferred by live cell specimens in microscopy that cannot be overcome using optical techniques alone can be used both for light microscopy and confocal microscopy. The system determines the 3D refractive index for the samples, and provides a...

    A method for mapping and correcting optical distortion conferred by live cell specimens in microscopy that cannot be overcome using optical techniques alone can be used both for light microscopy and confocal microscopy. The system determines the 3D refractive index for the samples, and provides a method for ray tracing, calculation of 3D space variant point spread, and generalized deconvolution.

    Applications


    Microscopy: The method was developed and applied for light microscopy, and is of critical importance for detection of weak fluorescently labeled molecules (like GFP fusion proteins) in live cells. It may be applicable also to confocal microscopy and other imaging methods like ultrasound, deep ocean sonar imaging, radioactive imaging, non-invasive deep tissue optical probing and photodynamic therapy. Gradient glasses: The determination of the three-dimensional refractive index of samples allows testing and optimization of techniques for production of gradient glasses. Recently continuous refractive index gradient glasses (GRIN, GRADIUM) were introduced, with applications in high quality optics, microlenses, aspherical lenses, plastic molded optics etc. Lenses built from such glasses can be aberration-corrected at a level, which required doublets and triplets using conventional glasses. Optimized performance of such optics requires ray tracing along curved path, as opposed to straight segments between surface borders of homogeneous glass lenses. Curved ray tracing is computation-intensive and dramatically slows down optimization of optical properties. Our algorithm for ray tracing in gradient refractive index eliminates this computational burden.

    Technology's Essence


    A computerized package to process three-dimensional images from live biological cells and tissues was developed in order to computationally correct specimen induced distortions that cannot be achieved by optical technique. The package includes: 1. Three-dimensional (3D) mapping of the refractive index of the specimen. 2. Fast method for ray tracing through gradient refractive index medium. 3. Three-dimensional space variant point spread function calculation. 4. Generalized three-dimensional deconvolution.

    +
    • Prof. Zvi Kam
    1266
    Fast cross-sectioning using multiphoton microscope.  The conventionally used laser-scanning microscopy, confocal and multiphoton microscopy, although being capable of performing optical sectioning, requires a long image acquisition time, tens of milliseconds per section in current commercial systems,...

    Fast cross-sectioning using multiphoton microscope.  The conventionally used laser-scanning microscopy, confocal and multiphoton microscopy, although being capable of performing optical sectioning, requires a long image acquisition time, tens of milliseconds per section in current commercial systems, due to the scanning process. The field of confocal microscopy relies on the idea of point-by-point illumination of a sample and use mechanical scanning in order to collect an image. Multiphoton microscopes offer a different mechanism for optical sectioning and the need for rejecting out-of-focus scattering is practically eliminated. However, the process is efficient only when the peak intensity of the illuminating light is high. Thus there is a growing need to facilitate the multiphoton microscopy imaging of a sample by providing a novel illumination configuration and method of its operation.

    Depth-resolved microscopy has been, for decades, practically synonymous with laser-scanning microscopy. The technique of the present invention provides for full-frame depth-resolved microscopy (or material processing), using an extremely simple setup as well as standard components, aiming at eliminating mechanical scanning across the sample thus making the image acquisition much faster.

     

    Applications


    • Optical system for use in a multi-photon microscope.
    • Material processing, e.g. simultaneous depth-resolved modification of a transparent substrate by femtosecond radiation.

    Advantages


    • The present invention provides for fast imaging/processing of a sample without scanning.
    • The temporal profile of the pulse remains unchanged as it propagates through the sample.
    • Single-shot depth resolved microscopy is able to capture extremely rapid dynamics, up to the nanosecond regime.
    • The setup enables full-frame video-rate fluorescence lifetime imaging, simply by gating the CCD intensifier.
    • Enables utilization of structure illumination microscopy.
    • Can be used with practically any multiphoton process.

    Technology's Essence


    The present invention provides the ability for illuminating a region of a sample with dimensions many orders of magnitude larger than a diffraction-limited spot of the imaging lens arrangement used in the microscope. Using this method, full-frame depth-resolved microscopy can be achieved using an extremely simple setup and standard components. the proposed microscope utilizes a pulse manipulator arrangement including a temporal pulse manipulator configured to define a surface, which extends perpendicular to the optical axis of a microscope in the front focal plane of an imaging lens arrangement, and which is patterned to affect trajectories of light components of the input short pulse impinging onto different points of this surface to direct these light components along different optical paths.

    This novel invention is not limited to imaging techniques in general and to microscopy in particular and can also be used for material processing.

    +
    • Prof. Yaron Silberberg
    1529
    We present an efficient and robust broadband crystal optical conversion device. Various applications of laser optics require tunable laser sources. Currently, most frequency conversion devices rely on a single non-linear crystal, which is either temperature or angle tuned to enhance efficiency. This...

    We present an efficient and robust broadband crystal optical conversion device. Various applications of laser optics require tunable laser sources. Currently, most frequency conversion devices rely on a single non-linear crystal, which is either temperature or angle tuned to enhance efficiency. This results only in a narrow efficient spectral band of conversion. Other techniques such as periodic quasi-phase matching result in improved efficiencies but still within a narrow predetermined band. Random quasi-phase matching results in improved bandwidth but in a significant reduction in efficiency. This new device enables ultra-broadband wavelength conversion while maintaining high efficiency.

    Applications


    • Laser optics industry
    • Frequency convertor for broadband signals
    • Generation of ultrafast visible radiation
    • Pulse selection.

    Advantages


    • 90% efficiency of conversion process.
    • Simple and compact
    • Insensitive to the deviations in alignment, no dependence of the angle incidence beam or of temperature
    • Frequency converter of both broadband signals and ultra-short pulses.

    Technology's Essence


    This device is based on a new method of adiabatic wavelength conversion. The device works whereby a strong narrow-band pump is introduced into the crystal along with a weaker pulse to be converted. This conversion is realized in a quasi-phase matched nonlinear crystal, where the period is tuned adiabatically from strong negative phase-mismatch to strong positive phase-mismatch (or vice versa). This results in the efficient transformation of the weaker pulse.

    +
    • Prof. Yaron Silberberg
    1461
    Bidirectional Similarity offers a new approach to summarization of visual data (images and video) based on optimization of well defined similarity measure. Common visual summarization methods (mainly scaling and cropping) suffer from significant deficiencies related to image quality and loss of...

    Bidirectional Similarity offers a new approach to summarization of visual data (images and video) based on optimization of well defined similarity measure.

    Common visual summarization methods (mainly scaling and cropping) suffer from significant deficiencies related to image quality and loss of important data. Many attempts have been made to overcome these problems, however, success was very limited and neither has become commercially applicable.

    Using an optimization problem approach and state-of-the-art algorithms, our method provides superior summarization of visual data as well as a measure to determine similarity, which together provides a basis for a wide range of applications in image and video processing.

    Applications


    The technology can be utilized in any application where an image size is changed or were similarity of images is important. Sample applications include:

    • Image processing software (as an added-on feature)

    • Resizing software

    • Creation of Thumbnails

    • Adjustment of images to different screen sizes (TV-cellular etc.)

    • Optimization of space-time patches in video processing

    • Image montages

    • Automatic image & video cropping

    • Images synthesis, photo reshuffling and many more


    Advantages


    While Bidirectional Similarity summarization will not replace existing technologies in all applications, it enjoys significant advantages that will offer better results in many of them. Among its advantages, the Bidirectional Similarity summarization:

    • Provides better resolution and in many cases reduces distortion compared to scaling
    • Reduces (or avoids) loss of important data compared to cropping
    • Allows importance-based summarization even when important information is widespread and hard to define
    • Uses quantitative objective similarity measure
    • Offers a generic tool for different image processing applications (synthesis, montage, reshuffling etc.)

    Technology's Essence


    Bidirectional Similarity Summarization is a patent-pending image and video processing method, which maximizes “completeness” and “coherence” between images and videos, using a measure for quantifying how “good” a visual summary is.

    The algorithm uses and iterative process, gradually reducing the image size, while keeping all source patches in the target image, without introducing visual artifacts that are not in the input data. Using a Similarity Index, the algorithm identifies redundant information and compromise the “less important” data while generating the required target image or video.

    The Similarity Index, which stands in the heart of the Bidirectional Similarity summarization algorithm, can be utilized by its own, as an objective function within other optimization processes, as well as in comparing the quality of visual summaries generated by different methods

    +
    • Prof. Michal Irani
    1121
    A method for aligning video images according to sequence. The problem of image alignment has been extensively studied, and successful approaches have been developed for solving this problem. However, these approaches turn out as problematic when there is insufficient overlap between the two images to...

    A method for aligning video images according to sequence. The problem of image alignment has been extensively studied, and successful approaches have been developed for solving this problem. However, these approaches turn out as problematic when there is insufficient overlap between the two images to allow extraction of common image properties, i.e., when there is no sufficient similarity (e.g., gray-level, frequencies, statistical) between the two images. Whereas two individual images cannot be aligned when there is no spatial overlap between them, this is not the case when dealing with image sequences. The outlined technology consists of fusion and alignment of discrete, non-overlapping moving images from different sources, by aligning spatio-temporal changes in each sequence rather than in each image.

    Applications


    • Multi-sensor image alignment for multi-sensor fusion
    • Alignment of images (sequences) obtained at significantly different zooms (can be useful in surveillance applications)
    • Generation of wide-screen movies from multiple non-overlapping narrow field-of-view movies (such as in IMAX movies) 
    • Alignment and integration of information across video sequences to exceed the physical visual limitations of any individual sensor (e.g., dynamic range, spectral range, spatial resolution, temporal resolution, etc). ~

    Advantages


    • Useful for spatially non-overlapping sequences
    • Useful in cases which are inherently difficult for standard image alignment techniques, such as when there is insufficient common spatial information across the two sequences

    Technology's Essence


    An image sequence contains much more information than any individual image frame does. In particular, temporal changes in a video sequence (e.g., due to camera motion) do not appear in any individual image frame, but are encoded between video frames. When these temporal changes are common to the two sequences, then these sequences can be aligned both in time and in space, even if there is no common spatial information whatsoever. The need for coherent visual appearance, which is a fundamental assumption in image alignment methods, is replaced in this invention with the requirement of coherent temporal behavior. This can be achieved by attaching the two video cameras closely to each other (so that their centers of projections are very close), and moving them jointly in space (e.g., such as when the two cameras are mounted on a moving platform or rig).

     

    Click here for additional information
    Click here to visit Prof. Irani`s Homepage

    +
    • Prof. Michal Irani
    1270
    Monoclonal antibodies to IgE Description: Rat monoclonal anti-IgE antibodies that was generated by fusion of plasmacytoma (84.1C) or myeloma (EM953) cells with splenocytes of rat immunized with purified murine IgE mAb. The antibodies react with various IgE mAb of different specificities and not with...

    Monoclonal antibodies to IgE

    Description: Rat monoclonal anti-IgE antibodies that was generated by fusion of plasmacytoma (84.1C) or myeloma (EM953) cells with splenocytes of rat immunized with purified murine IgE mAb. The antibodies react with various IgE mAb of different specificities and not with immunoglobulins of other classes, and recognize an epitope on the murine Fc epsilon region.

    Were shown to block IgE-Fc?R interactions and inhibit passive cutaneous anaphylaxis. 

    Clone 84.1c recognizes a site on IgE, which is identical or very close to the Fc?R binding site. May be used for detection and manipulation of the IgE response in mice.

    Reference:  Schwarzbaum S, Nissim A, Alkalay I, Ghozi MC, Schindler DG, Bergman Y, Eshhar Z. 1989. Mapping of murine IgE epitopes involved in IgE-Fc epsilon receptor interactions. Eur J Immunol 19(6):1015-23.

     

    M182, M185, M186

    +
    • Prof. Zelig Eshhar
    1166
    A series of monoclonal antibodies for monitoring hormone and drug additives in animals grown for the food industry. These include mAbs for peptide hormones, steroid hormones, drugs, leukotrienes, isoflavones, and veterinary drugs.

    A series of monoclonal antibodies for monitoring hormone and drug additives in animals grown for the food industry. These include mAbs for peptide hormones, steroid hormones, drugs, leukotrienes, isoflavones, and veterinary drugs.

    Applications


    Monitoring hormone and drug additives in food providing animals for veterinary use and for the food industry.

    Technology's Essence


    Researchers at the Weizmann Institute of Science have developed a series of mAb against peptide and steroid hormones, isoflavones, and human and veterinary drugs. These antibodies are particularly valuable for monitoring hormone and drug additives in food providing animals. The mAb are available for diagnostics, research, and therapeutics.

    The following mAb are available for licensing:

    (Clones marked with * are available for diagnostic and therapeutic use only).

    Peptide Hormones:
    LH: 4F10
    bFSH: 1G12*, 1H9, 1H7
    FSH: 6H6
    bHCG: 1D5
    bHCG+: 1C7 3F11
    HGH: 1C12*, 1C4*, 5E9, 4E12, 5C3, 1C5, 6G3, 5E6, 2C12

    Steroid Hormones:
    progesterone-11a-HS 1E11*
    progesterone-7a-CET 2H4
    Estrone-3-glucuronide 8A3
    Testosterone-3-CMO 5A4
    Testosterone-3-CMO 5F2*
    Estradiol-6-CMO 8D9*

    Anti-idiotypic antibodies to anti-steroids:
    betatypic anti-anti-testosterone 5A4 8G9
    betatypic anti-progesterone 2H4 15F11
    betatypic anti-anti-estrone-3-glucuronide 8A3 7C1
    alphatypic anti-progesterone 2H4 2E11
    betatypic anti-anti-estrone-3-glucuronide 8A3 11C1

    Drugs
    Digoxin 10F10
    RU-486* 8B6*
    Buserelin 8B4
    Medroxy-progesterone-acetate* 1F5*

    Leukotrienes
    LTC4* 6E7

    Biotin
    Biotin-BSA F1

    Isoflavones
    Daidzein 4E4
    Daidzein/daidzin/genistin 2F11
    Estrone-3-glucuronide 8A3
    Genistein/biochanin A 10D8
    Genistein/genistin/daidzin 6E8
    Betatypic anti-anti-genistein 10D8

    Veterinary drugs
    Sulfamethazine (SMZ) 21C7
    Betatypic anti-SMZ 12E12
    4-chloro-androstenedione 14H2
    Virginamycin 486
    Spiramycin 110
    Betatypic anti-anti-spiramycin 133

    +
    • Dr. Fortune Kohen
    1503
    Application of Ureides-class compounds protects plants from stress related senescence, effectively extending the shelf-life of vegetables, fruit, leafy greens, cut branches and flowers. Plants suffer damage from factors such as oxidative stress, premature senescence and chlorophyll degradation. All of...

    Application of Ureides-class compounds protects plants from stress related senescence, effectively extending the shelf-life of vegetables, fruit, leafy greens, cut branches and flowers.

    Plants suffer damage from factors such as oxidative stress, premature senescence and chlorophyll degradation. All of the above can impact the freshness of produce from harvest to end-consumer. Researchers at the Weizmann Institute found that under certain stress conditions model plants produce Ureides, shown to have a protective role. Unexpectedly, this protection can also be achieved by the exogenous application to plants or plant parts post-harvest.

    This innovative technique to preserve and prolong the shelf-life of fresh produce is clean, organic and cost-effective. In addition, engineered strains with altered Ureides metabolism can prove more resistant to stress related senescence.

    Applications


    • Post-harvest protection of produce via
    • Exogenous application (spray on leaves, add to roots etc.).
    • Incorporation in packaging (e.g. embedded in plastic film).

    Advantages


    • Treatment of both aging and light-deprivation in plants
    • Readily available and easily applied, does not require expertise to protect produce
    • Organic, clean, biodegradable materials.

    Technology's Essence


    Prof. Robert Fluhr and his team found that in wild-type plants conditions of extended darkness or increasing leaf age caused induction of transcripts related to purine catabolism, resulting in marked accumulation of Ureides. In contrast, Arabidopsis mutants of XDH, Atxdh1, accumulated the Ureides precursor (Xanthine) and showed premature senescence symptoms such as enhanced chlorophyll degradation, extensive cell death and upregulation of senescence-related transcripts.

    The level of plant reactive oxygen species (ROS) and mortality can be attenuated by the addition of Ureides, suggesting that these metabolites can act as scavengers of ROS. The results highlighted that the regulation of Ureides levels by Atxdh1 has implications for optimal plant survival during nutrient remobilization, such as occurs during normal growth, dark stress and senescence.

    +
    • Prof. Robert Fluhr
    1381

    Applications


    The new method for detecting irregularities has many applications which include:

    1. Detecting suspicious and/or salient behaviors in video
    2. Attention and saliency in images
    3. Detecting irregular tissue in medical images
    4. Automatic visual inspection for quality assurance (e.g., detecting defects in goods)
    5. Generating a video summary/synopsis
    6. Intelligent fast forward
    7. Non-visual data

      Technology's Essence


      Researchers at the Weizmann Institute have developed a new method for detecting irregularities based only on few regular examples, without any assumed models. In the new method the validity of data is determined as a process of constructing a puzzle: one tries to compose a new observed image region or a new video segment (''the query'') using chunks of data (''pieces of puzzle'') extracted from previous visual examples (''the database''). Regions in the observed data which can be composed using large contiguous chunks of data from the database are considered very likely, whereas regions in the observed data which cannot be composed from the database (or can be composed, but only using small fragmented pieces) are regarded as unlikely/suspicious. The problem is posed as an inference process in a probabilistic graphical model. The invention also includes an efficient algorithm for detecting irregularities. Moreover, the same method can also be used for detecting irregularities/anomalies within data without any prior examples, by learning the notion of regularity/irregularity directly from the query data itself.

      Click here to see additional features

    +
    • Prof. Michal Irani
    1250
    A robust method of identifying moving or changing objects in a video sequence groups each pixel with other adjacent pixels according to either motion or intensity values. Pixels are then repeatedly regrouped into clusters in a hierarchical manner. As these clusters are regrouped, the motion pattern is...

    A robust method of identifying moving or changing objects in a video sequence groups each pixel with other adjacent pixels according to either motion or intensity values. Pixels are then repeatedly regrouped into clusters in a hierarchical manner. As these clusters are regrouped, the motion pattern is refined, until the full pattern is reached.

    Applications


    These methods for motion-based segmentation may be used in a multitude of applications that need to correctly identify meaningful regions in image sequences and compute their motion. Such applications include:

    1. Surveillance and homeland security - detecting changes, activities, objects.
    2. Medical Imaging - imaging of dynamic tissues.
    3. Quality control in manufacturing, and more.

    Technology's Essence


    Researchers at the Weizmann Institute of Science have developed a multiscale, motion-based segmentation method which, unlike previous methods, uses the inherent multiple scales of information in images. The method begins by measuring local optical flow at every picture elements (pixels). Then, using algebraic multigrid (AMG) techniques, it assembles together adjacent pixels which are similar in either their motion or intensity values into small aggregates - each pixel being allowed to belong to different aggregates with different weights. These aggregates in turn are assembled into larger aggregates, then still larger, etc., yielding eventually full segments.

    As the aggregation process proceeds, the estimation of the motion of each aggregate is refined and ambiguities are resolved. In addition, an adaptive motion model is used to describe the motion of an aggregate, depending on the amount of flow information that is available within each aggregate. In particular, a translation model is used to describe the motion of pixels and small aggregates, switch to an affine model to describe the motion of intermediate sized aggregates, and finally turn to a perspective model to describe aggregates at the coarsest levels of scale. In addition to this, methods for identifying correspondences between aggregates in different images are also being developed. These methods are suitable for image sequences separated by fairly large motion.

    +
    • Prof. Ronen Ezra Basri

    Pages