You are here

Category
Technology Name
Briefcase
Scientist
1643
Improving beta cell isolation and purification techniques is a critical step towards the development of new cell-based therapies, diagnostic applications and diabetes research. Pancreatic Islets are composed of mixed cell populations, among them beta cells, which represent a major focus of interest due...

Improving beta cell isolation and purification techniques is a critical step towards the development of new cell-based therapies, diagnostic applications and diabetes research. Pancreatic Islets are composed of mixed cell populations, among them beta cells, which represent a major focus of interest due to their participation in the pathology of diabetes. Various techniques have been suggested to accomplish this step, yet efficient and robust isolation of beta cells remains a challenging task.
The present invention provides an efficient tag-free isolation method for pancreatic cell sub-types, based on separation according to a newly identified collection of surface markers. These markers are tightly correlated with specific functions, such as insulin production, ensuring enrichment of the desired functionality.
Probing against the newly identified markers in a combinatorial manner allows high degree of purity without compromising the yield, significantly increasing the amount of purified cells. Finally, the method is compatible with both extracts of pancreatic tissues and stem cells derived cultures, the latter set up high expectations in the diabetes therapy field.

Applications


A kit for isolation of distinct pancreatic cell subtypes

Advantages


  • High purity without compromising the yield of isolated cells.
  • Compatible with a variety of heterogeneous sources including cells extracted from pancreatic tissue, committed lineages of stem cells and cultures of differentiated stem cells.                                               

Technology's Essence


Using an innovative high throughput screen, linking specific cell surface markers with a particular functionality (e.g. insulin production), a collection of markers not previously identified in connection with pancreatic cells or with diabetes was found to be consistently expressed in human islets.
Cell isolation according to the selected markers is performed by exposing the heterogeneous source of cells to specific antibodies that recognize these markers, followed by a choice of sorting techniques such as fluorescence activated cell sorting (FACS).
The innovative concept of this method is the use of marker combinations, iterating the selection. Only cells that express both markers will be sorted out, thus increasing specificity and reducing contaminations. This increased specificity gives rise to a higher degree of purity without compromising the yield, resulting in larger amounts of isolated cells.
By applying the initial screen in yet another iteration, additional markers can be added to the selection, to refine the isolation procedure. 
As this method is generally applicable to the purification of mature as well as pluripotent or partially differentiated beta cell progenitors, it holds great potential for the isolation of clinically relevant cells for treatments of diabetes.

+
  • Prof. Michael Walker
  • Prof. Michael Walker
1615
A new process for the production of catalytic metal coated WS2 nanotubes, using cobalt, palladium, nickel, chromium and noble metals.These metal coated nanotubes were shown to have catalytic activity in different organic reactions including degradation of known organic contaminants (Co coated) and...

A new process for the production of catalytic metal coated WS2 nanotubes, using cobalt, palladium, nickel, chromium and noble metals.
These metal coated nanotubes were shown to have catalytic activity in different organic reactions including degradation of known organic contaminants (Co coated) and Suzuki and Heck coupling reactions (Pd coated).
Since catalytic chemical reactions are at the heart of many processes and industries, and efficient catalysis is essential for both economic and environmental reasons, this development of a new catalytic platform bears a potential to influence many diverse markets.

Applications


  • New and efficient Pd-based catalysts for diverse reactions.
  • New and efficient crude oil HDS catalysts.
  • New and efficient wastewater purification catalysts.
  • Production of activated hybrid WS2 nanotubes with new properties.
  • Tailoring catalytic nanotubes with different band gaps adjusted to different activation and catalysis applications.

Advantages


  • Formation of highly active catalytic nanotubes
  • Utilization of the nanotubes' very large surface area
  • Recruiting specific nanotube semiconducting characteristics for special catalysis requirements

Technology's Essence


The invention involves deposition of metal nanoparticles on prepared WS2 nanotubes (INT-WS2) in a two stage process involving Pd-nanocrystallites assisted activation followed by electroless plating.
In this process WS2 nanotubes are synthesized according to known procedures. The nanotubes are then covered by metal nanoparticles in a simple and straightforward procedure resulting with highly active nanotubes which can be utilized as catalysts for various chemical reactions.
This new hybrid technology opens the way to a new family of highly efficient, tunable catalysts; the INTs large surface area, specific band gap design and choice of metal result in an ability to produce unique tailor-made catalysts, applicable to many different industries. 

+
  • Prof. Tenne Reshef
  • Prof. Tenne Reshef
1555
Albumin binding probe for extending the lifetime of drugs. Most polypeptide drugs, in particular non-glycosylated proteins of molecular mass less than 50 kDa, are short-lived species in vivo having circulatory half lives of 5-20 min. Drug association with endogenous albumin may be suitable for...

Albumin binding probe for extending the lifetime of drugs. Most polypeptide drugs, in particular non-glycosylated proteins of molecular mass less than 50 kDa, are short-lived species in vivo having circulatory half lives of 5-20 min. Drug association with endogenous albumin may be suitable for designing an approach to protract the action in vivo of, potentially, any short-lived peptide/protein drug. In doing so two principal obstacles must be overcome: (1) following its conjugation, the probe introduced into a peptide or a protein should have sufficient affinity to albumin to manifest prolonged action in vivo, and (2) in case such covalent introduction results in an inactive product, the latter should be capable to undergo slow reactivation at physiological conditions. The present invention relates to engineering prolonged-acting prodrugs employing an albumin-binding probe that undergoes slow hydrolysis at physiological conditions.

Applications


  • Prolonging half life of short-lined drugs

Advantages


  • Prolonging the action of the drug without effecting its activity 
  • A desirable pharmacokinetic pattern

Technology's Essence


Since albumin is long-lived in vivo, drugs and endogenous substances that tightly associate with it have lower clearance rates than that of the unbound substances, and exhibit prolonged lifetime profiles in vivo. The present invention is based on a concept according to which a long chain fatty acid (LCFA) like albuminbinding compound is covalently linked to a short-lived amino-containing drug to form a non-covalent drug conjugate capable of associating with albumin in vivo, i.e., a long-lived prodrug that gradually releases the pharmacologically active constituent. This approach has been successfully implemented with several drugs (e.g. insulin, exendin and gentamicin).

+
  • Prof. Matityahu Fridkin
  • Prof. Yoram Shechter
1593
The study of social behavior in groups of mice may have crucial implications for understanding the social aspects of different disorders.  To be executed correctly, group studies require the ability to track individual’s behavior within the group structure. The main challenge of current research tools...

The study of social behavior in groups of mice may have crucial implications for understanding the social aspects of different disorders. 
To be executed correctly, group studies require the ability to track individual’s behavior within the group structure. The main challenge of current research tools is to allow individuals identification while maintaining sufficient resolution for accurate tracking.
The present technology provides a system that utilizes fluorescent fur dyes to differentially mark and track individuals within a group. Using a sensitive color camera and a newly designed tracking algorithm, behavior of groups may be recorded and analyzed with high temporal and spatial resolution.   
The technology further offers a method for characterizing the group’s interactions using the maximum entropy model.

 

Applications


 


Advantages


  • High spatial and temporal resolution – enabled by sensitive color video tracking.
  • Enables high detailed analysis of individual behavior within the group.
  • Suitable for community study of groups - limited only by available fur dyes.
  • Compatible with long-term analysis.
  • Simple, cost effective.
  • Minimal suffering and improved animal welfare.

  • Technology's Essence


    The present technology takes advantage of the fact that mice are nocturnal (active at night) animals, to mark their fur with different fluorescent dyes. Under ultraviolet light, the mice can be accurately and automatically tracked, over a number of days. As the mice are allowed to move freely in an interesting arena for exploration containing ramps, nest boxes and barriers (Figure 1), their trajectory and behavior are recorded using a sensitive color camera.
    The system further includes an image processing module which analyses the recorded images, calculates a spatiotemporal model and the nature of social interactions between individuals.
    Combining detailed behavioral and genetic analysis ate the level of individuals, in association with group analysis, may enable the identification of genetic and neuronal correlates of complex social interactions. 

    +
    • Prof. Alon Chen
    1646
    Dedicated and highly efficient EPR analysis of small volume samples in a range of few µl is now made simple with a novel device invented at the Weizmann Institute of Science. This device features a new ejection mechanism and a unique cold trap which enables collection of all time points in a RFQ series...

    Dedicated and highly efficient EPR analysis of small volume samples in a range of few µl is now made simple with a novel device invented at the Weizmann Institute of Science. This device features a new ejection mechanism and a unique cold trap which enables collection of all time points in a RFQ series in one continuous experiment.
    In order to design and develop inhibitors for therapeutic purposes, the reaction mechanisms of enzymes must be understood. For biological applications, a common methodology of addressing this need is combining Rapid Freeze Quench with Electron Paramagnetic Resonance (RFQ)-EPR, which allows the trapping and analysis of short lived intermediates in chemical reactions. However, commercial RFQ-EPR devices are limited for high field EPR applications due to the demand of large sample volumes for each time point.
    Prof. Goldfarb and her team built a new RFQ apparatus based on microfluidic flow and unique ejection and freezing systems, which can be used for collecting small volume samples in capillaries for high field EPR.

    Applications


    This technology, combined with the variety of W-band high resolution EPR technique (ENDOR, DEER and ESEEM) enables better mechanistic studies of enzymatic reactions, with an emphasis on structural transformations during the reaction, in an efficient and accurate way.


    Advantages


    • Collecting all RFQ time points in one continues experiment.
    • Produce small volume samples in the range of a few µl, and handles small capillaries, for high field ERP.
    • An improved dead time of ~5ms, relative to the commercial RFQs with a typical dead-time of 5–10 ms.
    • Ease-of-use and speed.

    Technology's Essence


    The innovative apparatus consists of two main parts: the microfluidic device and the freeze-quench setup. The microfluidic device comprises a mixer, which mixes the two reacting solutions, a flow path where the reaction occurs, and a sprinkler from which the solution is sprayed out of the device. Prof. Goldfarb and her colleagues improved the common mixing device by adding a fast stream of nitrogen gas which mixes with the ejected reaction solution, and sprays the frozen aerosol out in tiny drops at high speed.
    The innovative RFQ device was planned to have a cold solid surface on which the freezing happens rather than the traditional ejection into a cold liquid, in order to minimize the losses of the frozen solution. Moreover the plate rotates at a speed correlated to the flow speed of the solution, thus samples of different reaction times can freeze on a different radius. The frozen samples are then collected into quartz capillaries.

    +
    • Prof. Daniella Goldfarb
    1564
    A new recyclable size-selective filtration device. Particle size, chemical purity and dispersion of nanoparticles crucially determine their optical, electronic and chemical properties. Size-selective separation technologies are becoming increasingly important for the development of nanoparticles with...

    A new recyclable size-selective filtration device.

    Particle size, chemical purity and dispersion of nanoparticles crucially determine their optical, electronic and chemical properties. Size-selective separation technologies are becoming increasingly important for the development of nanoparticles with well-defined sizes, which have application in the fields of optoelectronic devices, biomedicine, materials, and catalysis.

    Researchers at the Weizmann Institute have fabricated supramolecular ultrafiltration membranes that can be used for filtration and size-selective chromatography of nanoparticles. The membranes are composed of a self-assembled three-dimensional fibrous network that is held together by reversible non-covalent interactions.

    The membranes are robust, easy to fabricate, and recyclable.

    Applications


    • Size-selective separation of semiconductor and metal nanoparticles
    • Uniformity and monodispersity of nanoparticles in solution.
    • Size exclusion chromatography of nanoparticles in the sub-5-nm size regime.

    Advantages


    • Efficient and inexpensive

    • Fast and easy fabrication

    • Recyclable

    • Self-assembled

    • Dual application regime: filtration and/or chromatography


    Technology's Essence


    The recyclable supramolecular membranes are formed from unique perylene derivatives that are large and flat aromatic molecules. These molecules are insoluble in water and form a 3-D network over a solid support, which can be used for the separation of nanoparticles.

    The filters can be subsequently recycled from this mixture using an organic solvent (e.g. dichloromethane), which separates the membrane material from the water-soluble nanoparticles, and reused without loss of performance.

    This material is hence highly attractive for application in the field of nanotechnology.

    +
    • Prof. Boris Rybtchinski
    1621
    Novel treatment for angiogenesis-related diseases.Angiogenesis — the growth of new blood vessels from pre-existing vasculature — has an essential role in development, reproduction and repair. Pathological angiogenesis is a common theme in a broad range of diseases such as cancer, autoimmune diseases,...

    Novel treatment for angiogenesis-related diseases.Angiogenesis — the growth of new blood vessels from pre-existing vasculature — has an essential role in development, reproduction and repair. Pathological angiogenesis is a common theme in a broad range of diseases such as cancer, autoimmune diseases, age-related macular degeneration and atherosclerosis. The global market for angiogenesis stimulators and inhibitors is forecast to reach ~US $50 billion by the year 2015. Most of the currently marketed angiogenesis regulators, such as Avastin, typically display modest efficacy and therefore further highlight the great need for the development of novel therapeutics. The current technology presents a novel method to treat angiogenesis-related disorders by modulating apolipoprotein B (ApoB).

    Applications


    • ApoB is a potential therapeutic target for the treatment of cancer and other non-neoplastic diseases.
    • ApoB levels may serve as a biomarker for cancer metastasis.

    Advantages


    • The anti-angiogenic effect of LDL administration was demonstrated in vivo, in zebrafish models, as well as in vitro, in relevant human cells lines.
    • Regulation of ApoB levels may be applied to treat a broad range of angiogenesis-dependent diseases.
    • Detection of ApoB levels can be readily achieved by analysis of body fluids such as blood and plasma.

    Technology's Essence


    Using a high-throughput genetic screen for vascular defects in zebrafish, researchers at the Weizmann Institute of Science have identified a genetic mutation that leads to excessive angiogenesis. The mutated gene is responsible for the assembly of ApoB-containing lipoproteins such as LDL, otherwise known as the ‘bad’ cholesterol. The group has found that low levels of LDL promote the formation of new blood vessels by directly interacting with the VEGF pathway. The outlined technology offers methods to modulate the levels of ApoB in order to stimulate, or inhibit angiogenesis, dependent on the therapeutic strategy. For example, inhibition of angiogenesis by increasing ApoB levels may repress tumor growth and attenuate its metastatic potential. In another application of this technology, increased circulating levels of ApoB can serve as a biomarker for the overproduction of blood vessels, thus enabling early diagnosis of pathogenic states in angiogenesis-dependent diseases.

    +
    • Prof. Karina Yaniv
    1597
    Metal-oxide material generates electromechanical stress an order of magnitude above existing materials.The ability to develop a mechanical stress in response to the application of an external electric field has many uses, and characteristic materials are classified as either piezoelectric or...

    Metal-oxide material generates electromechanical stress an order of magnitude above existing materials.The ability to develop a mechanical stress in response to the application of an external electric field has many uses, and characteristic materials are classified as either piezoelectric or electrostrictive. Modern inorganic piezoelectric devices are used for a wide variety of applications from inexpensive speakers and headphones, to sophisticated sonar transducers. Over the last several decades, these materials have become highly reliable and technologically mature, but the magnitude of the mechanical stress they can generate in response to an input electric signal has reached an upper limit.This innovative technology applies Gadolinium-doped Cerium Oxide (Gd-doped CeO2) to piezoelectric and electrostrictive devices and will enable high-performance electromechanical materials with output capabilities an order of magnitude above existing solutions, in excess of 500 MPa. This could facilitate the next generation of many consumer and industrial electronic devices.

    Applications


    • Wide range of personal electronic devices
    • Industrial and fine electronics – specifically powerful acoustic transducers

    Advantages


    • Generate large displacement and large stress simultaneously
    • Sensitive and tunable properties

    Technology's Essence


    In piezoelectric devices, stress develops due to the deformation of a non-centrosymmetric lattice under the application of an electric field. In commercial electrostrictors, or materials with centrosymmetric lattices and very large dielectric constants, an external electric field distorts the unit cells of the lattice, rendering them locally non-centrosymmetric. In both cases, the electromechanical stress develops due to a small displacement of atoms within each unit cell. Increasing the magnitude of the response would lead to more powerful actuators, and permit a decrease in the operating voltage; therefore, the search for novel mechanisms of electromechanical response in solids remains an important objective for both fundamental and applied science.

    We have demonstrated that Gd-doped CeO2, specifically Ce0.8Gd0.2O1.9, can generate stress an order of magnitude greater than the best electromechanically active materials. The large stress develops in response to the rearrangement of cerium-oxygen vacancy pairs and their local environment. This effect is expected to be two-fold; i) an applied electric field results in strain and stress directly, and ii) application of the external electric field affects the elastic modulus of Ce0.8Gd0.2O1.9 by suppressing the chemical strain effect. This is a fundamentally different mechanism than materials currently in use. In this view, Gd-doped CeO2 is representative of a new family of high-performance electromechanical materials.

     

    +
    • Prof. Igor Lubomirsky
    1650
    Efficient Production of natural Astaxanthin in bioengineered bacteria is a game changer for the nutraceuticals industry. The market-pull for natural Astaxanthin is much greater than the supply. Synthetic Astaxanthin is produced from petrochemical sources; it contains unwanted stereoisomers and is...

    Efficient Production of natural Astaxanthin in bioengineered bacteria is a game changer for the nutraceuticals industry. The market-pull for natural Astaxanthin is much greater than the supply. Synthetic Astaxanthin is produced from petrochemical sources; it contains unwanted stereoisomers and is rejected by consumers who prefer natural Astaxanthin. Production of natural Astaxanthin in microalgae is laborious, expensive, and time-consuming.
    Researchers at the Weizmann Institute used a combinatorial approach to construct bioengineered operons capable of modulating the expression levels of enzymes involved in the production of Astaxanthin. By combinatorial pairing of these genes in E. coli, they achieved natural Astaxanthin production 4-fold higher than previously reported.
    The innovative method can challenge the deficiencies of natural Astaxanthin production in microalgae. Following scale-up and industrial development of the proprietary process, production of natural Astaxanthin has the potential to be considerably cheaper and competitive with the cost of synthesizing Astaxanthin.

    Applications


    • Cost-effective Production of natural Astaxanthin for the nutraceuticals industry, animal feed industry, and others.
    • A doorway to the generation of many future products in E. coli, specifically metabolites that are produced in elaborate metabolic pathways.

    Advantages


    • Full control over carotenoid accumulation profile.
    • Cheaper, straightforward generation of Astaxanthin in E. coli as opposed to generation in algae which involves high raw materials cost, land usage, air emissions etc.
    • Natural Astaxanthin as opposed to synthetic, uncontaminated with intermediate compounds and stereoisomers.

    Technology's Essence


    At Dr. Ron Milo’s lab researchers employed a method that uses the relatively short Ribosome Binding Site (RBS) sequence in a combinatorial manner. The methodology involves combinatorial pairing of target genes (Astaxanthin metabolic pathway enzymes) with a small set of RBS sequences and assembling them into a library of synthetic operons to explore protein expression space and to locate desired phenotypes in bacteria.
    The researchers used a small set of RBS sequences to modulate in parallel the protein expression levels of multiple genes over several orders of magnitude. Using this approach, they were able to efficiently scan a large fraction of the Astaxanthin metabolic expression space with a manageable set of tested genotypes.

    +
    • Prof. Ron Milo
    1577
    A novel desulfurization system achieves removal of sulfur dioxide (SO2) from industrial exhaust streams at efficiencies that can greatly supersede technologies currently in use. The chemical process is highly selective to SO2, and consumes much less reagents, therefore reducing the cost of...

    A novel desulfurization system achieves removal of sulfur dioxide (SO2) from industrial exhaust streams at efficiencies that can greatly supersede technologies currently in use. The chemical process is highly selective to SO2, and consumes much less reagents, therefore reducing the cost of desulfurization.Techniques to capture SO2 from coal-burning plants have not changed in nearly 40 years. Once implemented, the technology presented here can become significantly more efficient and environmentally friendly than existing techniques, since no slurry waste is created from the wet sorbents typically used to capture SO2.The novel system can selectively recycle SO2 into useful sulfur-based compounds which can be resold; utilizing a carbonate eutectic melt this procedure can also be aimed to generate elemental sulfur, an inert and non-toxic compound which can be stored long-term until required for further use.In a world anxious over climate change, yet in demand of more energy, solutions should have the capacity to be implemented quickly and incorporated into existing infrastructure. This technology offers the potential to tackle several problems with one simple solution.

    Applications


    Integrate into industrial fossil-fuel burning facilities which include:

    • Power plants
    • Cement factories
    • Steel foundries

    Advantages


    • Implement into existing infrastructure and reduce reagents’ costs compared to current techniques
    • Significantly higher efficiency and elimination of hazardous waste by-products
    • Potential generation of revenue from recycled Sulfur waste.

    Technology's Essence


    The significant enhancement of this scrubbing technique is the sequentially operable scrubbing zone and regeneration zone, which communicate with one another via a molten eutectic mixture of lithium, sodium and potassium carbonates. In the scrubbing zone, an ingress flue gas interacts with the molten carbonates, resulting in chemical absorbance of the SO2 and in discharge of reaction gases. In the regeneration zone, either chemical or electrochemical melt regeneration takes place resulting in formation of sulfur containing vapor which is cooled down for converting the sulfur-containing vapor into a liquid and solid phase for a further collection and utilization.The technology developed by Prof. Igor Lubomirsky and his team introduces three essential improvements over past techniques: (i) the removal of sulfate from the melt is achieved at expected operating temperatures of an industrial scrubbing tower (480-550°C), which drastically reduces corrosion of metal components, (ii) the reduction of sulfates by CO gas rather than by carbon powder represents a simpler, one-step process, which results in a high reduction rate and allows for the reaction chamber to be small (few tens of m3 for a 1GW coal plant), and (iii) the removal of sulfate in the form of COS, rather than H2S, provides considerable freedom in choosing the final sulfur product – either sulfuric acid or elemental sulfur.

     

    +
    • Prof. Igor Lubomirsky
    1629
    A new unsupervised learning tool for analyzing large datasets using very limited known data via clustering was developed by the group of Prof. Domany. This solution was originally demonstrated for inferring pathway deregulation scores for specific tumor samples on the basis of expression data.Nearly...

    A new unsupervised learning tool for analyzing large datasets using very limited known data via clustering was developed by the group of Prof. Domany. This solution was originally demonstrated for inferring pathway deregulation scores for specific tumor samples on the basis of expression data.
    Nearly all methods analyze pathway activity in a global “atomistic” manner, based on an entire sample set, not attempting to characterize individual tumors. Other methods use detailed pathway activity mechanism information and other data that is unavailable in a vast majority of cancer datasets.
    The new algorithm described here transforms gene-level information into pathway- level information, generating a compact and biologically relevant representation of each sample. This can be used as an effective prognostic and predictive tool that helps healthcare providers to find optimal treatment strategies for cancer patients. Furthermore, this method can be generically used for reducing the degrees of freedom in order to derive meaningful output from multi-dimensional data using limited knowns.

    Applications


    • Personalized cancer treatment.
    • A tool for mining insight from large datasets with limited knowns.

    Advantages


    • Provides personalized solutions.
    • Can be utilized for rare conditions with very limited known information.
    • Proved on real oncologic datasets.
    • A Generic unsupervised learning tool.

    Technology's Essence


    The algorithm analyzes NP pathways, one at a time, assigning a score DP(i) to each sample i and pathway P, which estimates the extent to which the behavior of pathway P deviates from normal, in sample i. To determine this pathway deregulation score the expression levels of those dP genes that belong to P using available databases are used. Each sample i is a point in this dP dimensional space; the entire set of samples forms a cloud of points, and the “principal curve” that captures the variation of this cloud is calculated. Then each sample is projected onto this curve. The pathway deregulation score is defined as the distance DP(i), measured along the curve, of the projection of sample i, from the projection of the normal samples.

     

    +
    • Prof. Eytan Domany
    • Prof. Eytan Domany
    1602
    A novel technology for robust downregulation of bacterial genes.RNAi (RNA interference) is a powerful method for downregulation of gene expression in eukaryotic systems. RNAi-based technologies are extensively applied as scientific research tools, as well as actively explored as promising therapeutic...

    A novel technology for robust downregulation of bacterial genes.RNAi (RNA interference) is a powerful method for downregulation of gene expression in eukaryotic systems. RNAi-based technologies are extensively applied as scientific research tools, as well as actively explored as promising therapeutic agents. However, although an efficient way to dowregulate bacterial and microbial gene expression has been long sought after, RNAi is not applicable in these species. The present technology offers a rapid and simple means to silence gene products in prokaryotic systems.

    Applications


    • Treatment of bacterial infection, by targeting bacterial genes vital for antibiotic resistance or bacterial virulence.
    • Enhanced biofuel production by targeting genes that interfere with ethanol and/or hydrogen biosynthesis.
    • Generation of improved bacterial strains for the diary industry (e.g. phage-resistant strains).
    • Discerning prokaryotic gene function by silencing the expression of the gene product.

    Advantages


    • The present technology may offer means to treat antibiotics-resistant strains.
    • Because CRISPR-based technology does not involve ‘classical’ genetic engineering, the resulting products do not require labeling as 'genetically modified'.
    • CRISPR-based technology system allows for the development of a rapid, scalable and high-throughput platform to probe the function of genetic circuits in prokaryotes.

    Technology's Essence


    CRISPR (clusters of regularly interspaced short palindromic repeats) is a recently discovered anti-viral system that functions as the prokaryotic-equivalent of the adaptive immune system. CRISPR provides bacteria with protection against foreign genetic elements such as viruses by incorporating short stretches of invading DNA sequences in genomic CRISPR loci. These integrated sequences are thought to function as a genetic memory that prevents the host from being infected by the viruses and other genetic elements containing this recognition sequence. A team of researchers at the Weizmann Institute, headed by Dr. Rotem Sorek, has developed a unique technology to gain robust and rapid silencing of prokaryotic gene expression by exploiting the CRISPR system capacity to efficiently downregulate gene products. This potent technology can potentially be utilized in a broad range of areas such as in the agriculture, food and pharmaceutical industries as well as in the scientific research arena.

    +
    • Prof. Rotem Sorek
    1662
    Immunotherapy, that is the use of the immune system to treat cancer, is currently a leading candidate in the combat against cancer. Unlike the toxic effects of both chemotherapy and radiation, immunotherapy is considered to have mild side effects due to its ability to differentiate between healthy and...

    Immunotherapy, that is the use of the immune system to treat cancer, is currently a leading candidate in the combat against cancer. Unlike the toxic effects of both chemotherapy and radiation, immunotherapy is considered to have mild side effects due to its ability to differentiate between healthy and cancerous cells. Also, the therapeutic role of the immune system is an essential element in the healing process due to bone marrow transplantation for hematologic malignancies.
    However, a more efficacious and less toxic T cells based treatment is required. Effective therapy depends on the functional avidity between T cell receptors (TCRs) and peptide-MHC complex (pMHC). However the natural affinity of TCR is low and they do not naturally undergo the processes that improve antibody affinity, such as somatic hypermutation (SHM). Currently there is no method of increasing the affinity of a TCR to its ligand. Moreover there is no knowledge on how use affinity maturated TCRs for creating anti-tumor reactive cells
    This technology presents a method of increasing the affinity of a TCR to its ligand. This is done by subjecting TCR genes to SHM via the enzyme Activation Induced cytidine Deaminase (AID). The technology further provides affinity maturated TCRs (in cell- bound or in soluble form) and their pharmaceutical potential for immunotherapy. 

    Applications


    • Generating anti-tumor T cells
    • Generating T cells reactive against selected antigen

    Advantages


    • Rapid
    • Effective

    Technology's Essence


    This novel technology reveals that the affinity of a TCR to its ligand may be increased remarkably by subjecting TCR genes to SHM, directed by AID.
    First a nucleic acid construct encoding a TCR gene is expressed in a host cell. Next SHM is used to introduce mutations to the TCR gene. Last, the the cells will be analyzed for affinity maturation by tetramer staining and subsequently sorted by FACS.
    There are three parallel approaches to perform affinity maturation for the TCR: (1) Ex-vivo affinity maturation system, using Tet-regulated expression of AID (2) Ex-vivo affinity maturation system, using controlled expression of AID by mRNA electrophoresis (3) In-vitro affinity maturation system, using extracts from cells that are in SHM and recombinant AID.

    +
    • Prof. Rachel Lea Eisenbach
    1546
    Improvement of protein production by modulating the tRNA pool. For maximal heterologous expression of proteins per host cell, the optimal level of expression of genes needs to be addressed. The science and art of expressing a gene from one species in another often amounts to modifying the codons of the...

    Improvement of protein production by modulating the tRNA pool. For maximal heterologous expression of proteins per host cell, the optimal level of expression of genes needs to be addressed. The science and art of expressing a gene from one species in another often amounts to modifying the codons of the gene, and supplementing the host with specific tRNAs. Yet the full challenge of heterologous expression is not only to maximize expression per host cell, but also to minimize the burden on the host. The outlined invention describes a universally conserved profile of translation efficiency along mRNAs, based on the adaptation between coding sequences and the tRNA pool, to improve heterologous gene expression and thus protein production.

    Applications


    • Improvement of the yield and success rate of recombinant protein production.

    Advantages


    • Protein expression levels can be artificially increased
    • Minimization of the burden on the host

    Technology's Essence


    The translation efficiency profile of a gene is defined, for each codon position, as the estimated availability of the tRNAs that participate in translating that codon. The profile is high at codons that correspond to abundant tRNAs and low at codons that correspond to rare tRNAs. In this invention it is predicted that the first ~30-50 codons of genes appear to be translated with a low efficiency “ramp”, while the last ~50 codons show highest efficiency. The “ramp” serves as a late stage of initiation and is an optimal and robust means to reduce ribosomal traffic jams, thus minimizing occupation of free ribosomes, ribosomal abortions and, ultimately, the cost of protein expression. Implementation of appropriate ramping in heterlogous proteins, given the host?s tRNA pool, might improve the yield of expressed recombinant proteins.

    +
    • Prof. Yitzhak Pilpel
    1583
    The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa. Thermoelectric effects are used in various applications, where heat energy is saved, that would be otherwise lost. Although the TE conversion efficiency is nowadays low (5-8%), the novel...

    The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa. Thermoelectric effects are used in various applications, where heat energy is saved, that would be otherwise lost. Although the TE conversion efficiency is nowadays low (5-8%), the novel technique developed at Weizmann Institute, has a disruptive potential to change this market.  

    Prof. Y. Imry and his team at Weizmann Institute came up with Thermal Electric conversion technique, based on a new TE device architecture which allows performance enhancement. The core invention is in the field of Bi-junction thermoelectric device architecture, having a thermoelectric gate interposed between two electric regions, leading to thermal electric conversion efficiency optimization.

    Applications


    Various TE devices will benefit from better TE efficiency, achieved by the developed conversion technique. The growing market for thermoelectric energy harvesters will reach $865 million by 2023. Current TE market is driven by consumer energy harvesting applications and some niche segments:

    •  Automotive energy harvesting applications, since around 40% of the energy produced by internal combustion engines is currently lost in heat through the exhaust.
    • Wireless devices/sensors segment is forecasted to account for over a third of the overall market for thermoelectric harvesters and cooling by 2023.

    Advantages


    In order to drive down the thermoelectric module costs and facilitate broad deployment, TE has several barriers to overcome: 

    •  low conversion efficiency;
    • toxicity and low availability of chemical elements constituting part of the thermoelectric materials.

     In this context, the main TE market challenges are reaching higher efficiencies using low cost thermoelectric materials. These challenges can be addressed by the proposed technology.


    Technology's Essence


    Prof. Y. Imry and his team at Weizmann Institute have developed novel bi-junction TE device, having a thermoelectric gate interposed between two electric regions, aiming at TE efficiency improvement. Thermoelectric efficiency depends on the figure of merit (ZT). The figure-of-merit curves, for the developed 3-T TE device configurations show that higher ZT should be achieved.  

    The secret essence of the invented configuration is in using two independently adjustable input parameters - voltage and temperature - as drivers for optimizing device thermoelectric efficiency.

     

    +
    • Prof. Yoseph Imry

    Pages